roduction TMEP 3D Intro Deblurring f/Nuclei? Side Focus in Ar+KCI More on Deblurring Conclusions

Advancing Heavy-Ion Collisions in Theory & Experiment: Model Evaluation & 3D

Pawel Danielewicz

Facility for Rare Isotope Beams, Michigan State University, USA

Probing dense baryonic matter with hadrons II: FAIR Phase-0

GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Feb 19-21, 2024

Danielewicz

Deblurring f/Nuclei?

Transport modeling needed because equilibrium not reached in collisions

Conclusions usually reached on basis of 1-2 models

Variations btw model predictions may be stronger than EOS sensitivity

 \Rightarrow Transport Model Evaluation Project (TMEP)

EOS effects weak - need to concentrate on observables particularly sensitive to EOS

More on Deblurring

 $\begin{array}{l} \text{Symmetry-energy effects weak} \\ \leftrightarrow \text{ asymmetry variations } \sim 0.1 \end{array}$

 \Rightarrow Isospin observables

Conclusions

Introduction

000

Opposing Conclusions May Emerge

E.g., on sensitivity to ordering of effective masses

Coupland et al. PRC94(16)011601

Introduction

Deblurring f/Nuclei?

Many-body derivations: BBGKY hierarchy or Green's functions, principally exact At some point truncation, typically losing impact of long-term correlations/fluctuations, $G_0^{-1}G = 1 + \Sigma G \rightarrow \Sigma \simeq VGVGG$ In parallel, separation of scales: short de Broglie wavelength, collision range/duration

Loss of long-term correlations irrelevant at high densities when short-term correlations dominate, but hurts at low when long-term correlations persist

Two groups of models:

TMEP

00000000

- Boltzmann-equation models, short-term correlations only
- molecular dynamics & stochastic models attempt to capture long-term correlations, borrow treatment f/short-range from other group

 $\label{eq:bound} \mbox{Mean fields} \leftrightarrow \mbox{EOS, momentum dependence, in-medium rates, fluctuations, cluster formation...}$

More on Deblurring

Transport Model Evaluation Project

TMEP: Models evaluated under controlled conditions Review: Wolter *et al.* PPNP122(22)103962

History

- 2009/2014, Au + Au at 100 & 400 MeV/nucl Xu *et al.* PRC93(16)044609 $\rho(\mathbf{r})$ -evolution & nucleonic observables (stopping, flow) differences hard to understand \rightarrow switch to simplified conditions
- 2018-21, Box w/periodic boundaries, close to equilibrium, analytic limits Mean field, collision term, *π* production in cascade mode
- 2023, Again HIC: Sn + Sn at 270 MeV/nucl Subthreshold π production for different symmetry energies in the context of S π RIT measurements

FRIB

Mean Field

Standing-wave initialization in a box

Colonna et al. PRC104(21)044609

Response function:

Danielewicz

Pion Production in a Box

Asymmetric system initialized at T = 60 MeV w/nucleons only, no Pauli blocking Ono *et al.* PRC100(19)044617

Differences due to correlations btw collisions/collision strategies \rightarrow cancel in π^-/π^+ -like ratios

More on Deblurring

TMEP

000000000

Charged Pion Ratio in Sn + Sn at 270 MeV/nucl

cascade

w/Mean Field

Good agreement w/o mean field, but not so good with, due to differences in nucleon evolution

HIC

Introduction TMEP 3D Intro Deblurring f/Nuclei? Side Focus in Ar+KCl More on Deblurring Contro on October Control Con

Charged Pion Ratio in Sn + Sn at 270 MeV/nucl

More adjustment w/mean field: pBUU not fully adhering to mean-field specifications + more radical Pauli

Correction for treatment of nonlinear term in QMD: TQMD test, TQMD & TQMD-L

If similar effect in other QMD models, much better agreement? $\lesssim 10\%$

Paradigm: Triple-Differential Yields from Data

Distributions for Fixed Direction of Reaction Plane from Theory and Experiment

no control over plane

What is it?!

Paradigm: Triple-Differential Yields from Data Distributions for *Fixed Direction of Reaction Plane* from Theory and Experiment

some control, vn

Still not clear what the system is...

3D Intro

Paradigm: Triple-Differential Yields from Data Distributions for *Fixed Direction of Reaction Plane* from Theory and Experiment

3D Intro

some control, vn

full control, $\frac{d^3N}{dp^3}$

Claim: You can go from center to right panel through deblurring

Deblurring by Example

Budd, Crime Fighting Math, plus.maths.org magazine

3D Intro

Blurred Photo of Moving Car

Photo of Parked Car

Fast Moving

Deblurred

Deblurring in Optical Microscopy Before and After Nearest Neighbor Deconvolution Analysis

Danielewicz

Introduction

Detector efficiency ϵ , *n* measured ptcle number, *N* actual number $N \simeq \frac{1}{\epsilon} n$

Correcting f/Distortions Due to Apparatus or Method

Typical energy loss in thick target $\overline{\Delta E}$ for detected particle

3D Intro

000000

 $n(\zeta) = \int \mathrm{d}\xi \, P(\zeta|\xi) \, N(\xi)$

General problem stated probabilistically, with $P(\zeta|\xi)$ - probability to measure ptcle characteristic to be ζ when it is actually ξ

For small distortions, *P* finite only when ζ little different from ξ . Optical terminology: P - blurring or transfer function. (a)

$E_{\rm prod} \simeq E_{\rm det} + \overline{\Delta E}$

Danielewicz

More on Deblurring

Conclusions

More on Deblurring

Bayesian Deblurring

Distorted $n(\zeta)$ measured, while pristine $N(\xi)$ sought:

3D Intro

00000

 $n(\zeta) = \int \mathrm{d}\xi \, P(\zeta|\xi) \, N(\xi)$

Deblurring f/Nuclei?

 $P(\zeta|\xi)$ - probability that ptcle with ζ' detected while it really has characteristic ξ , understood given the method/apparatus, can be simulated (Geant4) & can depend on N

 ${\it Q}(\xi|\zeta)$ - unknown complementary probability that ptcle has characteristic ξ while measured at ζ

Bayesian relation: number of times ptcle has characteristic in d ξ while measured in d ζ is

 $P(\zeta|\xi) N(\xi) d\xi d\zeta = Q(\xi|\zeta) n(\zeta) d\xi d\zeta$

Hence
$$N(\xi) = \frac{\int d\zeta \, Q(\xi|\zeta) \, n(\zeta)}{\int d\zeta' \, P(\zeta'|\xi)}, \quad Q(\xi|\zeta) = \frac{P(\zeta|\xi) \, N(\xi)}{\int d\xi' \, P(\zeta|\xi') \, N(\xi')}$$

Richardson-Lucy method solves eqs iteratively till stabilization,

Introduction

Side Focus in Hydrodynamic Calculations

Deblurring f/Nuclei?

Matter dispersed in the final stage, but most likely direction of motion away from the beam, e.g., in the calculations by Buchwald for Nb + Nb at 400 MeV/nucl Stöcker&Greiner Phys Rep. 137(86)277

Can this be seen experimentally??

Danielewicz

Introduction TMEP 3D Intro Deblurring f/Nuclei? Side Focus in Ar+KCl More on Deblurring Conclusions

1984 Claim

Gustafsson *et al.* PRL 18(84)1590 Plastic Ball Group claims to see preferential emission away from the beam axis, in $d^3N_{ch}/dy d^2p^{\perp}$ for 400 MeV/nucl Nb + Nb collisions, when determining reaction plane from flow tensor, $\mathbf{S}^{\perp z} = \sum_{\nu} \mathbf{p}_{\nu}^{\perp} p^z/2m_{\nu}$

1984 Claim

Gustafsson *et al.* PRL 18(84)1590 Plastic Ball Group claims to see preferential emission away from the beam axis, in $d^3N_{ch}/dy d^2p^{\perp}$ for 400 MeV/nucl Nb + Nb collisions, when determining reaction plane from flow tensor, $\mathbf{S}^{\perp z} = \sum_{\nu} \mathbf{p}_{\nu}^{\perp} p^z/2m_{\nu}$

Estimating Reaction-Plane Direction w/o Self-Correlation

Deblurring f/Nuclei?

ഫഫഫ്

D. D_2 D1

Plane direction f/particle μ estimated with $1 = \frac{1}{2} \left(+1, \text{ if } p_{\perp}^{2} \right)^{2}$

$$\mathbf{q}_{\mu} = rac{1}{N}\sum_{
u
eq \mu}\omega_{
u}\,\mathbf{p}_{
u}^{\perp} \qquad \omega_{
u} = egin{cases} +1, & ext{if}\, m{p}_{
u}^{2} > 0 \ -1, & ext{if}\, m{p}_{
u}^{2} < 0 \end{cases}$$

More on Deblurring

N - measured particle multiplicity; other ptcles in the event used as reference for μ

TRUE DIRECTION

OF REACTION

PD&Odyniec PLB157(85)146 PLANE Problem: Reference vector \mathbf{q}_{μ} Gaussian fluctuates around true plane direction, blurring features

Danielewicz

 \mathbf{q}_{μ}

Current Solution: Angular Moments of Distributions

Deblurring f/Nuclei?

000000

Solution: average angular moments (azimuthal Fourier coefficients) $v_n = \langle \cos n\phi \rangle$

 ϕ - angle relative to true reaction plane Voloshin&Zhang ZfPhC70(1996)665

 v_n derived from average scalar products/contractions, e.g.,

 $\langle {f p}_{\mu}^{\perp} \cdot {f q}_{\mu}
angle \simeq {m
ho}^{\perp} \left\langle {m q}^{m x}
ight
angle \left\langle \cos \phi
ight
angle$

for different p^{\perp} , *y* and ptcle ID Problem: unclear physics in v_n especially for higher *n*

1.23 GeV/nucl Au + Au $b \simeq 6 \text{ fm}$ HADES PRL125(2020)262301

More on Deblurring

Danielewicz

Schematic 1D Model

Proposition: Carry out as good determination of 3D info as you can

000000

Deblurring f/Nuclei?

& refine with deblurring. First 1D deblurring test. Projectile at unknown velocity V deexcites emitting N = 10 ptcles distributed with box-like dN/dvin projectile cm. <u>Task</u>: Measuring ptcles in lab, determine dN/dv. Cm velocity V' estimated from remaining ptcles, so V' & dN/dv' smeared:

$$\frac{\mathrm{d}N}{\mathrm{d}v'} = \int \mathrm{d}V' \, \frac{\mathrm{d}P}{\mathrm{d}V'} \, \frac{\mathrm{d}N}{\mathrm{d}v}$$

PD&Kurata-Nishimura PRC105(2022)034608

More on Deblurring

Danielewicz

ntroduction

3D li 000 000 Deblurring f/Nu

Side Focus in Ar+KCl

More on Deblurring

Conclusions

Ar + KCl @ 1.8 GeV/nucl

Ströbele PRC 27(83)1349

495 events from Streamer Chamber, $b \lesssim$ 2.4 fm

PD&Odyniec PLB 157(85)146

Reminder: Hydrodynamic Calculations

Side Focus in Ar+KCl

Matter dispersed in the final stage, but most likely direction of motion away from the beam, e.g., in the calculations by Buchwald for Nb + Nb at 400 MeV/nucl Stöcker&Greiner Phys Rep. 137(86)277

Deblurring f/Nuclei?

Can this be seen experimentally??

Side-Focus in Ar + KCl 1.8 GeV/nucl?

Particles in the forward hemisphere, $y^* \sim 0.5 y_B^*$

PD, Ströbele, Nzabahimana PRC108(23)L051603

PD, Ströbele, Nzabahimana PRC108(23)L051603

PD, Ströbele, Nzabahimana PRC108(23)L051603

Side-Focus: Experiment vs Theory

Side Focus in Ar+KCl

0000000

More on Deblurring

(a)

Side-Focus: Experiment & Theory

What's Behind Deblurring's Success?

Singular value decomposition f/forward conditional probability:

Deblurring f/Nuclei?

$$P_{ij} = \sum_{n} \sigma_{n} U_{ni} V_{nj} \qquad \Rightarrow \qquad Q_{ji} \stackrel{?}{=} \sum_{n} \sigma_{n}^{-1} V_{nj} U_{ni}$$

i - measurement, j - reality, Q - backward conditional probability.

Plain Reaction-Plane Deblurring:

$$U_{n}(\varphi) = V_{n}(\varphi) = \begin{cases} \frac{1}{\sqrt{2\pi}}, & n = 0\\ \frac{\cos(n\varphi)}{\sqrt{\pi}}, & n > 0 \end{cases}$$
$$\sigma_{n} = \langle \cos(n\Delta\Phi) \rangle$$

with $\Delta \Phi$ estimated-true reaction plane deviation Detector effects yield more complicated vectors Positivity + regularization stabilize restoration! Hansen *et al. Deblurring Images* 2006; Sinethemba Mamba, PD *to be submitted*

More on Deblurring

Instability??

Restoration with Inefficiencies

SIRIT@RIKEN Time-Projection Chamber

Sn + Sn @ 270 MeV/nucl

Proton distribution in lab angles

Strong

azimuthally-asymmetric inefficiencies for slow particles and at small polar angles

Simulated Restoration f/SIIRIT TPC in Backward CM Hemisphere

Preliminary (minimal statistics)

Flow model ran forward through efficiency simulator for the SIIRIT TPC: not only particles lost but also reaction-plane effects

Simulated Restoration f/SIIRIT TPC in Backward CM Hemisphere

Preliminary (minimal statistics)

Flow model ran forward through efficiency simulator for the SITRIT TPC: not only particles lost but also reaction-plane effects - restored through deblurring

Conclusions

- TMEP has promoted tests for codes to meet
- Many code weaknesses were identified, motivating authors to improve them
- In parallel to the improvements, expectations are rising, such as in the context of the symmetry energy
- On the observables front, deblurring can give access to 3-differential distributions associated with the reaction plane, completely circumventing v_n
- Side focus in Ar + KCl collisions at 1.8 GeV/nucl with $v^x \sim 0.1 c$, visible with just ~ 500 collision events, is just an example of what may be achieved!
- Other nuclear problems where deblurring started producing results: ${}^{26}O \rightarrow {}^{24}O + n + n$ decay, source-imaging from 2-particle correlations in HIC

Thanks: Hermann Wolter + support from US Department of Energy under Grant US DE-SC001920

FRIB