Benchmark channel: $\bar{p}p \rightarrow n(\pi^+\pi^-)$ (n=1,2)

Elisa Fioravanti

INFN Ferrara

PANDA Collaboration Meeting - Paris 10th - 14th September 2012

Outline

- Kinematics of the reaction
- Data simulation
- Analysis

•
$$\bar{p}p \rightarrow \pi^+\pi^-$$

•
$$\bar{p}p \rightarrow \pi^+\pi^-\pi^+\pi^-$$

Outlook

Kinematics of the reaction

- Multipion analysis was relevant for Central Tracker study in order to compare the two detector setup (STT and TPC).
- The study was included in the Technical Design Report for the Straw Tube Tracker (arXiv:1205.5441v2).

Now we can do the same analysis using also the Forward Tracker (with Ideal Tracking), and not only with barrel.

In particular the interesting figures of merit are:

- Invariant mass resolution of $\pi^+\pi^-$ and $\pi^+\pi^-\pi^+\pi^-$
 - Reconstruction efficiency of $\bar{p}p \to \pi^+\pi^-$ and $\bar{p}p \to \pi^+\pi^-\pi^+\pi^-$
 - Vertex resolution

How results are affected by Forward Tracker?

Data simulation

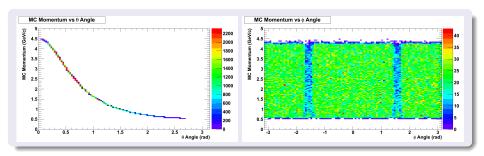
Energy in the center of mass system: 3.07 GeV; p_z =4.0 GeV

Cross section reference from: V. Flaminio, CERN-HERA 84-01:

- $\bar{p}p \rightarrow \pi^+\pi^-$: σ =0.007 mb at $E_{CM}=$ 3.07 GeV
- $\bar{p}p \rightarrow \pi^+\pi^-\pi^+\pi^-$: σ =0.43 mb at $E_{CM}=$ 2.954 GeV

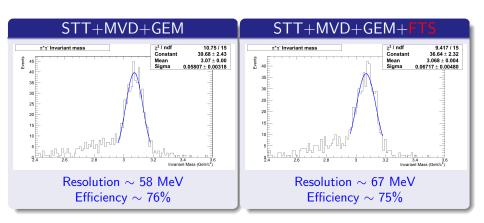
- Event generation is performed with EvtGen event generator using PHSP decay model
- MonteCarlo simulation, digitization and reconstruction is performed within pandaroot framework
- PID is based on MonteCarlo Truth information
- 1.000 events were produced.

Analysis


- Analysis is performed with PndAnalysis
- No background suppression is studies
- \bullet Events with 2.07 GeV $< m(\pi^+\pi^-) <$ 4.07 GeV are selected
- Events with 2.57 GeV $< m(\pi^+\pi^-\pi^+\pi^-) < 3.57$ GeV are selected
- \bullet Vertex fit is performed and best candidate in each event is selected by minimal χ^2

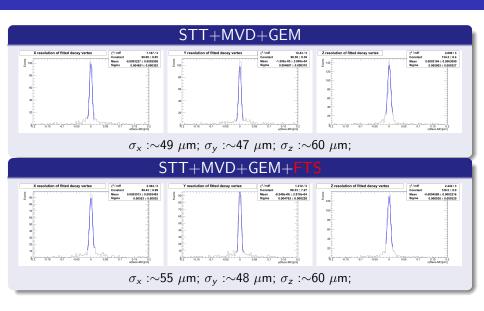
$$\bar{p}p \to \pi^+\pi^-$$

6


Pion momentum distributions

The majority of pions has:

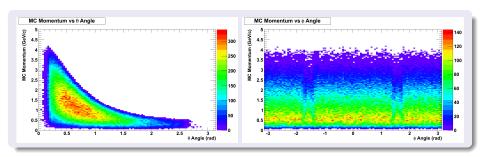
- momentum between 1 GeV/c and 4 GeV/c
- polar angular range between 0.4 rad and 1.1 rad.


Invariant mass distribution

Efficiency=Number of reconstructed events/ number of generated events.

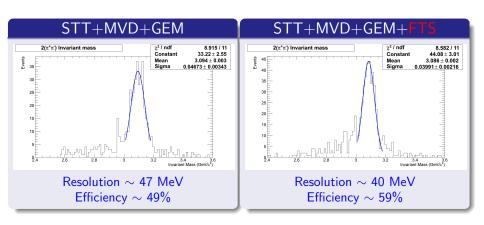
8

Vertex resolution

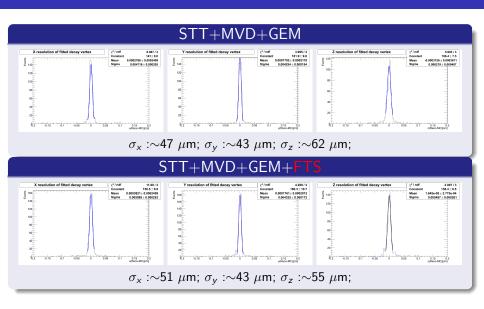


$$\bar{p}p \rightarrow \pi^+\pi^-\pi^+\pi^-$$

10


Pion momentum distributions

The majority of pions has:


- momentum between 0.5 GeV/c and 2.5 GeV/c
- polar angular range between 0.4 rad and 1.1 rad.

Invariant mass distribution

Efficiency=Number of reconstructed events/ number of generated events.

Vertex resolution

Outlook

General comment: maybe we need to do the same study with more statistics.

	$ar{p}p ightarrow \pi^+\pi^-$		$\bar{p}p \rightarrow \pi^+\pi^-\pi^+\pi^-$	
	NO FTS	WITH FTS	NO FTS	WITH FTS
Invariant mass resolution	58 MeV	67 MeV	47 MeV	40 MeV
Invariant mass efficiency	76%	75%	49%	59%
Vertex: X resolution	49 μ m	55 μ m	47 μ m	51 μ m
Vertex: Y resolution	47 μ m	48 μ m	43 μ m	43 μ m
Vertex: Z resolution	60 μ m	60 μ m	62 μ m	55 μ m

THANKS FOR YOUR ATTENTION