The secondary target for the hypernuclear experiment

Sebastian Bleser

Helmholtz-Institut Mainz Johannes Gutenberg-Universität

PANDA-Meeting September 11th, 2012

Sebastian Bleser

PANDA-Meeting, 09/11/2012

Motivation

Production and detection of Λ - Λ -hypernuclei at PANDA Primary target (C-12): • formation of Ξ^- -particles in $p + {}^{12}C$ – reactions <u>Secondary target (Be, B, C):</u> • deceleration of Ξ^{-} -particles integration in the atomic shell of absorber atoms capture of Ξ⁻ by nucleus • formation of Λ - Λ -hypernuclei by conversion: $\Xi^- p \rightarrow \Lambda \Lambda$ detection of weak decay products Ge detector array: • γ -spectroscopy of Λ - Λ -hypernuclei with Ge detectors

→ Talk of Marcell Steinen

Helmholtz-Institut Mainz

Sebastian Bleser

Requirements for the secondary target

- adjusted to stop time and life time of Ξ⁻
 (τ = 0.164 ns) as well as geometry
 - ⇒ compact structure without gaps (t_{stop} ≈ 0.06 ns)
- tracking of Ξ⁻ and the decay products of Λ-Λ-hypernuclei
- ⇒ alternating layers of Si strip detectors and absorber material

red:

20 layers of double sided silicon strip detectors (thickness 300 µm) in each block

gray:

20 layers of absorbers (thickness 1 mm) different for each block (⁹Be, ^{10,11}B or ^{12,13}C)

> HELMHOLTZ GEMEINSCHAFT Helmholtz-Institut Mainz

Stopping of Ξ^- in absorber layers:

First information to detect a double Λ hypernucleus:

- Energy loss measurement of Ξ[−] in DSSD
- First layer DSSD because of early stopping

Helmholtz-Institut Mainz

Sebastian Bleser

1 61

Simulations

Simulation results after generation (box generator) of 200,000 Ξ^- -particles with momentum range 100 MeV/c to 500 MeV/c (including beampipe)

Stopped Ξ^- (\approx 7%) in beryllium absorbers of 20 x 1.0 mm thickness

Simulations

Simulation results after generation of 200,000 Ξ^- -particles with momentum range 100 MeV/c to 500 MeV/c

Simulations

Secondary target built by the root geometry package

Weak decay of double Λ hypernuclei:

Second information to detect a double Λ hypernucleus:

reconstruction of the secondary vertex

For low momentum pions (80-120 MeV/c) material budget too high

huge energy lossmultiscattering effects

 \Rightarrow no sufficient momentum resolution

HELMHOLTZ

Helmholtz-Institut Mainz

Sebastian Bleser

1 53

Primary target

Task of the primary target: production of slow Ξ^-

Requirements:

- minimal hadronic background in backward direction
- constant luminosity of p-beam
- ⇒ beam losses, mainly due to coulomb scattering, must be kept low
- ⇒ ¹²C micro-wire target with thickness 3 μm, width 100 μm

Insertion to the beam:

- controlling interaction rates by moving target into beam halo
- easy replacement

Sebastian Bleser

PANDA-Meeting, 09/11/2012

Compromise between

- stopping rate (thickness absorber + number of layers)
- good momentum resolution
- design of the beampipe

Sebastian Bleser

Readout of the secondary target

tiny compact structure and high irradiation \Rightarrow fan out the readout electronics

Readout of double sided silicon strip detectors:

Sensor and readout boards connected by ultra thin microcables via TAB bonding (Tape Automated Bonding)

Readout boards hosting pitch adapter, frontend chips and connector

HELMHOLTZ

Helmholtz-Institut Mainz

1 53

Hypernuclear setup

photons from excited double hypernuclei emitted isotropically

high particle flux in forward direction

⇒ arrangement of Germanium detector array in backward direction

Helmholtz-Institut Mainz

Sebastian Bleser

1 63

Ultra-thin flexible cables

Manufacturer of cables:

State Enterprise Scientific Research Technological Institute of Instrument Engineering (Ukraine)

holes in polyimid layer for ultra-sonic TAB bonding

material: "foiled dielectric" FDI-A-20

- 10µm aluminium layer
- 10µm polyimide layer

⇒ very low material budget: ≈ 99.75% of 1 MeV photons pass 10 cables

PANDA-Meeting, 09/11/2012

Outlook

- Determination of the momentum resolution with the present setup
- Simulation of electronic reponse of silicon strips: our digitization/clusterization tasks inherit from SDS detector classes (main class) as the microvertex, lumi detectors
- Evaluation of the radiation damage by neutrons/protons from primary raction
- Designing and adding readout electronics and holding structures to the simulations using the CadConverter

Sebastian Bleser

PANDA-Meeting, 09/11/2012

Rates

\overline{p} interaction rate	$3 \cdot 10^6 \ s^{-1}$
\overline{p} momentum	$3{ m GeV/c}$
internal target	$Z \approx 6$
reactions of interest	$\overline{\mathrm{p}}\mathrm{p} \to \overline{\Xi}^+ \Xi^-$
	$\overline{\mathrm{pn}} \to \overline{\Xi}^0 \Xi^-$
cross section $(\overline{p}N)$	$2\mu{ m b}$
rate	$100 \ s^{-1}$
$\Xi^- \mathrm{PF}$	$7.5 \cdot 10^{-3}$
total stopped Ξ^-	64800 per day
$\Xi^- p \rightarrow \Lambda \Lambda$ conversion probability	5%
produced $\Lambda\Lambda$ hypernuclei	3240 per day
probability of individual transition	10%
target escape probability $(E_{\gamma} = 1.332 \mathrm{MeV})$	70%
full energy peak efficiency	3.45%
trigger efficiency	20 – 30%
detected individual transitions	70 per month

HELMHOLTZ GEMEINSCHAFT

Helmholtz-Institut Mainz

Sebastian Bleser

panda