

Electron momentum reconstruction study with PANDARoot

Binsong MA Institut de Physique Nucléaire, ORSAY Collaboration meeting at PARIS, 11/09/2012

Outlook

- Studies of e⁻ momentum reconstruction with Kalman Filter.
- Studies of Bremsstrahlung γ emission.
- Our proposal: use the measured Bremsstrahlung photon energy in EMC to solve the problem of e⁻ momentum reconstruction with Kalman Filter.

Problem of e⁻ reconstruction with Kalman Filter

- Track follower of Kalman Filter(KF): GEANE
- GEANE calculates the mean electron energy loss and the rms, but Bremsstrahlung is highly non-gaussian!

So, KF can not handle the problem correctly

$\frac{1}{0} \frac{1}{0} \frac{1}$

P = 1GeV/c, ϑ = 90°, ϕ = 120°.

	μ (μ hypo)	e⁻ (e⁻ hypo)	e⁻ (µ hypo)
Mean(gauss)	<0.1%	-0.32%	0.37%
Sigma	1.6%	4.6%	1.8%

e⁻ hypothesis: Bremsstrahlung taken into account in GEANE. μ hypothesis: only multi scattering and ionization in GEANE

 e^{-} with e^{-} hypothesis: momentum resolution very bad (σ =4.6%). e^{-} with μ hypothesis: better result but with large tails.

$e^{\scriptscriptstyle -}$ and $\mu^{\scriptscriptstyle -}$ angular resolutions

P=1GeV/c, ϑ =90°, ϕ =120°

	σ(φ) (deg)	σ(ϑ) (deg)
μ^{-} (μ hypothesis)	0.089	0.066
e ⁻ (μ hypothesis)	0.10	0.068
e ⁻ (e ⁻ hypothesis)	0.11	0.068

Good angular resolution for $e^{\text{-}}$ with μ hypothesis.

Tiny worsening of angular resolution for electron.

Small shifts: 0.03 deg. This is due to the fact that photons are emitted in the direction of the electron.

Proposal from Lia

- Hypothesis: the bad resolution for the electron hypothesis is due to the treatment of the fluctuation of energy loss in the case of Bremsstrahlung.
- Set the error of energy loss due to Bremsstrahlung in GEANE to 0. (σ_2 : multi scattering, ionization, <u>Bremsstrahlung</u>)
- Energy loss: mean value. (ΔE: multi scattering, ionization, Bremsstrahlung)

Pt = 1GeV/c, ϑ = 90°, ϕ = 120°, e⁻ hypothesis

 $x(t_{2}) = \frac{\frac{m}{\sigma_{m}^{2}} + \frac{x(t_{1}, t_{2})}{\sigma_{2}^{2}}}{\frac{1}{\sigma_{m}^{2}} + \frac{1}{\sigma_{2}^{2}}}$

Better resolution than in electron hypothesis.(σ =4.6% \rightarrow 1.8%)

But 4% of shift for the peak, the tail is not reduced.

Setting the fluctuation of Bremsstrahlung to zero can not solve our problem perfectly.

Can the Bremsstrahlung y be recovered in the EMC?

Photons emission in the tracking system

For 100 000 e⁻, P_t=1 GeV/c, θ= 90°, φ=120° 10200 photons created in STT 43300 in MVD

Threshold of photon energy: 1MeV

Numbers of y	Percentage(%)	
0	59.1	
1	30.7	
2	7.8	
3 and more	2.4	

Numbers of photons created in STT+MVD

INSTITUT DE PHYSIQUE NUCLÉAIRE

ORSAY

XLII PANDA Collabration meeting, Paris, 10-14 sept 2012

Momentum resolution for different numbers of γ

 $10^5 e^- 1 \text{ GeV/c}$, $\vartheta = 90^\circ$, $\phi = 120^\circ$, μ hypothesis, $E\gamma > 1 \text{MeV}$

INSTITUT DE PHYSIQUE NUCLÉAIRE

ORSAY

Our proposal

- Handle the problem event by event, and use the Bremsstrahlung γ.
- Initial value of momentum reconstructed with μ hypothesis. (P_{rec})
- Searching the Bremsstrahlung γ in the EMC.(E_{γ})
- Add the energy of γ to the reconstructed e⁻ momentum. $P_{new} = P_{rec} + E_{\gamma}$

Correlation between resolution and e⁻ momentum loss

The KF reconstructs the momentum after γ emission with a good resolution. \rightarrow Adding the γ energy should improve the resolution?

Photon direction from MC

XLII PANDA Collabration meeting, Paris, 10-14 sept 2012

Global cluster energy in EMC

rough selection of gamma came from tracking system: $\rightarrow e^{-}$

(rejected by E_{cluster}/P_{rec}) 0.9< E_{cluster}/P_{rec} <1.2

→γ

γ from tracking system(which we need)120<phi<135

γ from DIRC (rejected by phi) phi>135

Preliminary result

Ν(γ)		Mean(gauss fit)	Sigma(gauss fit)
1 gamma	With E(γ)	<0.01%	2.0%
	w/o Ε(γ)	1.2%	2.0%
2 gamma	With E(γ)	<0.1%	2.3%
	w/o Ε(γ)	2.5%	2.4%

Shift of the peak reduced to 0

Width almost unchanged

XLII PANDA Collabration meeting, Paris, 10-14 sept 2012

Conclusion

 Adding the photon energy from EMC to the reconstructed energy of electron can reduce the tail of resolution peak.

• On-going work:

→better selection of cluster due to photon from tracking system.

→apply this method to all angle and a range of momentum of electron.

Backup slides

