Particle identification using TMVA/MLP and Naïve Bayes for EMC detector

Malgorzata Gumberidze IPN Orsay, France

Toolkit for Multivariate Data Analysis (TMVA)

- \checkmark large variety of sophisticated data selection algorithms
 - Rectangular cut optimization
 - Projective and Multi-dimensional cut optimization
 - Fisher discriminant
 - > ANN (3 diff. implementations)
 - Boosted/bagged Decision Trees
- ✓ have one common interface to different MVA method easy to use & to compare many different MVA methods
- \checkmark common preprocessing of input data: decorrelation, PCA
- \checkmark TMVA provides training/test and evaluation of all MVAs
- \checkmark Each MVA method provides a ranking of input variables
- $\checkmark\,$ choose the best one for your selection problem–
- \checkmark available as open source package
- \checkmark however, still under development ... easily out of date
- *T*MVA is a sourceforge (SF) package for world-wide access
 - Home page <u>http://tmva.sf.net</u>/
 - SF project page<u>http://sf.net/projects/tmva</u>
 - View CVS <u>http://tmva.cvs.sf.net/tmva/TMVA/</u>
 - Mailing list<u>http://sf.net/mail/?group_id=152074</u>
 - Tutorial TWiki<u>https://twiki.cern.ch/twiki/bin/view/TMVA/WebHome</u>

MVA methods included in TMVA

- Rectangular cut optimization
- Projection likelihood estimation
- Multidimensional probability density estimation
 - Probability density estimator range search (PDERS)
 - ✤ Multidimensional K-Nearest Neighbour (K-NN) → studied previously by M. Babai
- Linear discriminant analysis
 - H-Matrix (χ^2) Estimator
 - Fisher Discriminant
 - Function Discriminant Analysis (FDA)
- Boosted/Bagged decision trees (BDT)
- ✤ Artificial neural networks (ANN)
 - Clermont-Ferrand neural network
 - ROOT neural network
 - ✤ Multilayer Perceptron (MLP) neural network → used previously in 'Babar framework'
- Predictive learning via rule ensemble (Rule-Fit)
- Support Vector Machine (SVM)

→ studied independently by R. Kunne

No single good classifier ...

Criteria		Classifiers								
		Cuts	Likeli- hood	PDERS/ k-NN	H-Matrix	Fisher	MLP	BDT	RuleFit	SVM
Perfor- mance	no / linear correlations	:		0		\odot		:		\odot
	nonlinear correlations	:	8	\odot	$\overline{\mathbf{S}}$	8	\odot	\odot	÷	\odot
Speed	Training	\odot		\odot		\odot		8	÷	$\overline{\mathbf{S}}$
	Response	\odot	\odot	89		\odot	\odot		÷	
Robust- ness	Overtraining	0		Ċ	\odot	\odot	8	8	e	
	Weak input variables	0		8	\odot	\odot			e	æ
Curse of dimensionality		\odot	\odot	8	\odot	\odot		\odot	(
Transparency		\odot		(\odot	\odot	8	8	8	\bigotimes

TMVA evaluation tool

- TMVA is not only a collection of classifiers, but an MVA framework
- After training, TMVA provides ROOT evaluation scripts (through GUI)

📉 TMVA Plotting Macros 📃 🗆 🛛
(1a) Input Variables
(1b) Decorrelated Input Variables
(1c) PCA-transformed Input Variables
(2a) Input Variable Correlations (scatter profiles)
(2b) Decorrelated Input Variable Correlations (scatter profiles)
(2c) PCA-transformed Input Variable Correlations (scatter profiles)
(3) Input Variable Linear Correlation Coefficients
(4a) Classifier Output Distributions
(4b) Classifier Output Distributions for Training and Test Samples
(4c) Classifier Probability Distributions
(4d) Classifier Rarity Distributions
(5a) Classifier Cut Efficiencies
(5b) Classifier Background Rejection vs Signal Efficiency (ROC curve)
(6) Likelihood Reference Distributiuons
(7a) Network Architecture
(7b) Network Convergence Test
(8) Decision Trees
(9) PDFs of Classifiers
(10) Rule Ensemble Importance Plots
(11) Quit

Plot all signal (S) and background (B) input variables with and without pre-processing

Correlation scatters and linear coefficients for S & B

Classifier outputs (S & B) for test and training samples (spot overtraining)

Classifier *Rarity* distribution

Classifier significance with optimal cuts

B rejection versus S efficiency

Classifier-specific plots:

- Likelihood reference distributions
- Classifier PDFs (for probability output and Rarity)
- Network architecture, weights and convergence
- Rule Fitting analysis plots
- Visualise decision trees

How to chose out input for the training

Choose input variables sensibly:

- \checkmark Do not include variables that are badly simulated
- \checkmark Avoid variables with high correlations among themselves
 - ➢ drop all but one
- \checkmark Some input variables have no discriminative power
 - drop them, reduce dimensionality
- Transform strongly peaked distributions into smoother ones, using log(), for instance
- ✓ Transform all variable in similar numerical range

Choose architecture sensibly:

➤ start with simple architecture, increase complexity gradually

Avoid overluning, use cross validation on independent training sample

NN are no magic, understand what your trained NN is doing!

What is available from EMC detector ...

negative pion

Linear correlation coefficients in % 100 -16 -30 -31 -15 -14 -11 -6 E9E25 18 100 80 -6 -17 -12 3 -26 -19 100 18 E1E9 -11 27 23 14 1 26 22 -5 6 25 1 **100 -11 -22** emc crystal 60 100 1 theta 2 -2 -4 40 3 100 -3 -5 р -3 20 -2 12 10 5 -11 -12 -19 100 3 log(Z00) 6 8 3 17 20 39 -3 4 100 -19 -5 -2 -5 2 -6 log(Z33) -0 19 -32 -44 -29 95 100 4 -12 -1 22 -19 -11 log(Z31) -20 19 -37 -51 -37 100 95 -3 -11 26 -26 -14 log(Z42) -40 4 54 63 100 -37 -29 39 5 -5 -5 log(Z53) 1 3 -15 11 84 100 63 -51 -44 20 10 -3 -4 14 -12 -31 -60 log(1-Z20) 9 100 84 54 -37 -32 -2 23 -17 -30 log(lat) -80 -2 -3 2 27 -6 -16 emc 100 9 11 4 19 19 -100 theta emc E1E9E9E25 emc log(1a1)9(1-29(253)(<42)(<37)(<33)(<00)

electron

Correlation Matrix (signal)

Correlation Matrix (background)

Monte Carlo momentum : 0.2 - 5 GeV/c

For the final PID following observables were selected: E/p (emc), lateral momenta, E1/E9, E9/E25

ROC curve for different combination of parameters

Input, variables, conditions ...

external: january 2012

pandaroot: july 2012

Testing done using 10^6 events : e⁻, π^- , μ^- , K⁻, p⁻ Momentum range: 0.2 - 5 GeV/c θ range: $5^\circ - 140^\circ$ ϕ : $0^\circ - 360^\circ$

MLP (MultiClass) trained on 10⁵ events using: Er/p, E1/E9, E9/E25, Lat Naïve Bayes provided by Ronald : Er/p, log(lat), log(Z53)

PIDs from Naïve Bayes: momentum dependence

PIDs from Naïve Bayes (II): θ dependence

MLP response: momentum dependence

MLP response (II): momentum dependence

SELECTION: $(PID_e > PID_{\pi})$ && $(PID_e > PID_{\mu})$ && $(PID_e > PID_{\mu})$ && $(PID_e > PID_{\mu})$

SELECTION: $(PID_e > PID_{\pi})$ && $(PID_e > PID_{\mu})$ && $(PID_e > PID_p)$ && $(PID_e > PID_k)$

SELECTION: $(PID_e > PID_{\pi})$ && $(PID_e > PID_{\mu})$ && $(PID_e > PID_{\mu})$ && $(PID_e > PID_{\mu})$ && $(PID_e > PID_{\mu})$

Comparison of the performance (II):

SELECTION: $(PID_e > PID_{\pi})$ && $(PID_e > PID_{\mu})$ && $(PID_e > PID_{\mu})$ && $(PID_e > PID_{\mu})$

Comparison of the performance (II):

Comparison of the PB and present analysis performance: ELE > 95%

Physics Book

has been calculated. Fig. 3.20 shows the electron efficiency and contamination rate as a function of momentum achieved by requiring an electron likelihood fraction of the EMC of more than 95%. For momenta above 1 GeV/c one can see that the electron efficiency is greater than 98% while the contamination by other particles is substantially less than 1%. For momenta below 1 GeV/c, the electron

Figure 3.20: The electron efficiency and contamination rate for muons, pions, kaons and protons in different momentum ranges by using the EMC information.

10 input variables in total have been used, namely E/p, p, the polar angle θ of the cluster, and 7 shower shape parameters (E_1/E_9 , E_9/E_{25} , the lateral moment of the shower and 4 Zernike moments). The

Comparison of the PB and present analysis performance inside PANDAroot: ELE > 95% <u>Physics Book</u>

Figure 3.20: The electron efficiency and contamination rate for muons, pions, kaons and protons in different momentum ranges by using the EMC information.

USING ONLY EMC information

 Electron efficiency: using PandaRoot analysis methods (MLP and Bayes) we are able to reproduce Physics Book results

Pion impurity:

 \checkmark

- ✓ p > 2GeV models in PandaRoot shows smaller impurity
- ✓ for low momenta both PandaRoot models (MLP, Bayes) shows worst results. Still Bayes is better than MLP

Average efficiency and impurities

Summary and outlook

✓ Do we need to understand differences between BP and present MLP results ?
✓ If yes, check if including the same variables as it was done for the Physics Book we also can obtain lower impurity for the EMC at lower momenta.

✓ Include information from other detectors: STT, DIRC, DISC into MLP -> on-going work

✓ Apply parameters (MLP) into the analysis of e⁺e⁻ and $\pi^+\pi^-$