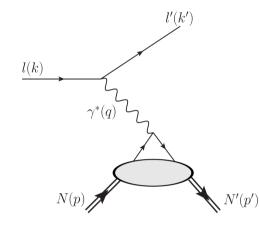
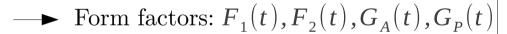
Deeply Virtual Compton Scattering at Jlab/CLAS

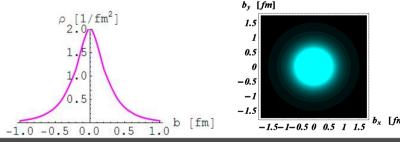
Baptiste GUEGAN


PANDA collaboration meeting 09/10/12

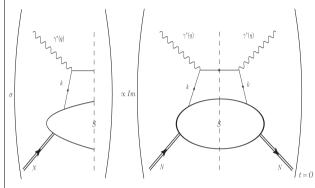
IPN Orsay


Nucleon structure using the electromagnetic probe

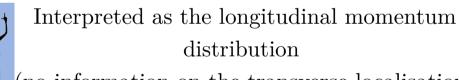
Elastic scattering

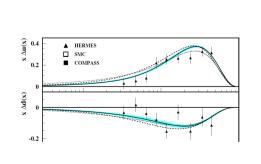

Local non-forward matrix element:

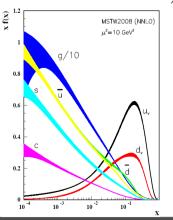
$$\langle p'|\overline{q}(0)Oq(0)|p\rangle$$



Interpreted as the transverse localisation of partons in the nucleon (independently of their longitudinal momentum)

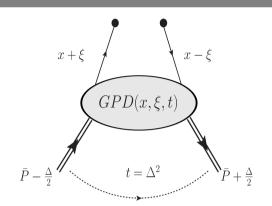

Deep inelastic scattering

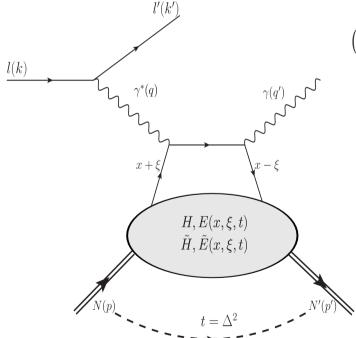

Non-Local forward matrix element:


$$\langle p | \overline{q}(0) O q(y) | p \rangle$$

 \rightarrow Structure functions: $f_2(x)$, $g_1(x)$

(no information on the transverse localisation)


Generalized Parton Distributions



Extension to the non-local, non-forward matrix element:

$$\langle p'|\overline{q}(0)Oq(y)|p\rangle$$

Accessed with the Deeply Virtual Compton Scattering:

At large Q^2 , the process can be factorized and described by 4 Generalized Parton Distributions

 $(x+\xi)$ and $(x-\xi)$: longitudinal momentum fractions of quarks $t=\Delta^2=(p'-p)^2$: squared momentum transfer

Unpolarized GPDs:

(quark helicity independent)

$$\rightarrow H(x,\xi,t)$$
 Vector

$$\rightarrow E(x,\xi,t)$$
 Tensor

Polarized GPDs:

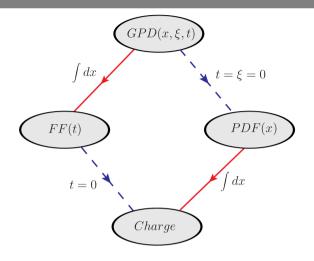
(quark helicity dependent)

$$ilde{H}(x,\xi,t)$$
 Axial - Vector

$$ightharpoonup \tilde{E}(x,\xi,t)$$
 Pseudoscalar

GPDs properties

In the forward limit ($t=\xi=0$), the GPDs reduce to PDFs:

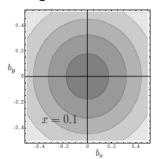

$$H(x,0,0)=q(x)$$

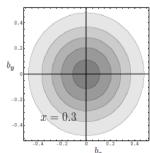
$$H(x,0,0)=q(x)$$
 $\tilde{H}(x,0,0)=\Delta q(x)$

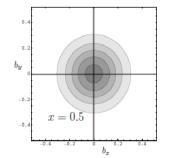
No similar equations for E and \tilde{E} . New information!

The first moment of the GPDs reduce to the FFs:

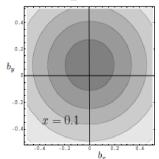
$$\int_{-1}^{1} dx \, H(x, \xi, t) = F_1(t) \qquad \int_{-1}^{1} dx \, E(x, \xi, t) = F_2(t)$$
$$\int_{-1}^{1} dx \, \tilde{H}(x, \xi, t) = G_A(t) \qquad \int_{-1}^{1} dx \, \tilde{E}(x, \xi, t) = G_P(t)$$

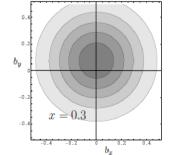

The second moment of (E+H) when $t \to 0$: total angular momentum

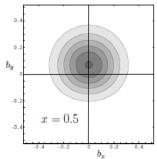

$$\int_{-1}^{1} dx \, x [H^{q}(x,\xi,0) + E^{q}(x,\xi,0)] = 2 J_{quarks} \qquad \frac{1}{2} = \underbrace{(S_{quarks} + L_{quarks})} + J_{gluons}$$


$$\frac{1}{2} = (S_{quarks} + L_{quarks}) + J_{gluons}$$

At $\xi = 0$, a GPD is a x-decomposition of the form factor:


u-quark distribution in a unpolarized proton





u-quark distribution in a polarized proton

 $EMC: \approx 30\%$

Exclusive electroproduction of a photon

5

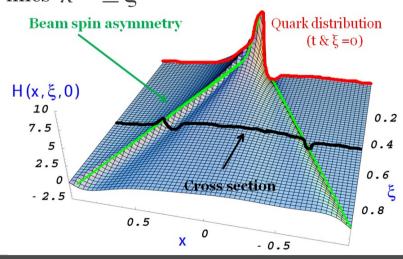
Contribution from both DVCS and Bethe-Heitler (undistinguishable experimentally):

$$\sigma_{(ep \to ep \, \gamma)} \propto |T^{DVCS} + T^{BH}|^2$$

$$\sigma_{(ep \to ep \, \gamma)} = \int_{-\infty}^{\infty} |T^{DVCS} + T^{BH}|^2$$

• \mathcal{T}_{BH} At low t, the nucleon FFs (Dirac, Pauli) are well known so that \mathcal{T}_{BH} is precisely calculable

•
$$\mathcal{T}^{DVCS} \propto \int_{-1}^{1} dx \frac{f(x,\xi,t)}{x \pm \xi \mp i\epsilon} = \mathcal{P} \int_{-1}^{1} dx \frac{f(x,\xi,t)}{x \pm \xi} \pm i\pi f(x = \mp \xi,\xi,t)$$

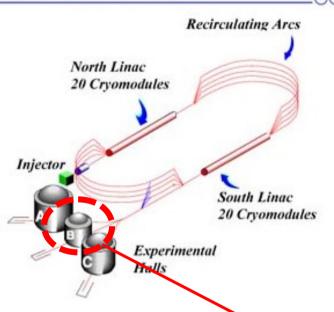

GPDs appear in the **real part** through an integral over x

GPDs appear in the **imaginary part** at the lines $x = \pm \xi$

With a polarized beam and an unpolarized target, one can measure 2 observables:

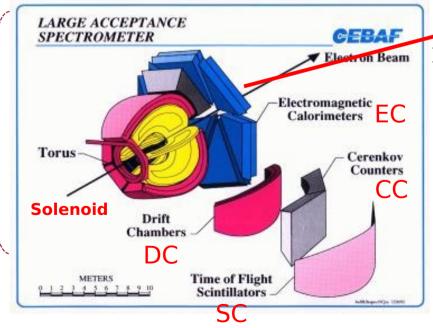
$$\frac{d^{4}\sigma}{dtdQ^{2}dx_{B}d\phi} \approx \left|T^{BH}\right|^{2} + 2T^{BH} \cdot \text{Re}(T^{DVCS}) + \left|T^{DVCS}\right|^{2}$$

$$\frac{d^{4}\sigma - d^{4}\sigma}{dtdQ^{2}dx_{B}d\phi} \approx 2T^{BH} \cdot \text{Im}(T^{DVCS}) + \left|T^{DVCS}\right|^{2} - \left|T^{DVCS}\right|^{2}$$



CLAS (CEBAF Large Acceptance Spectrometer)

@ JLAB (Jefferson Laboratory)


6

MACHINE CONFIGURATION

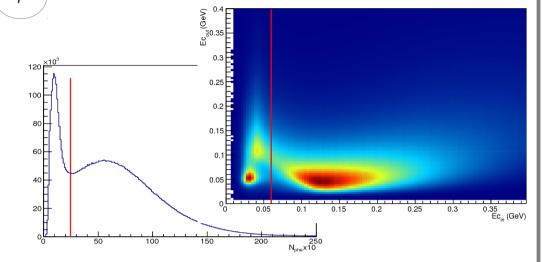
- Large acceptance detector
- Toroidal magnetic field (2,5 T)

- 1500 physicists, ~30 countries, operationnal since end 97
- Two LINACs, 3 experimental halls
- Imax=20 nA, Emax= 6 GeV, 100% duty cycle
- Luminosity: Hall B= $10^{34} cm^{-2} s^{-1}$

DVCS photons are mostly emitted at forward angles

IC

Identification of the final state particles


 $ep \rightarrow ep \gamma$

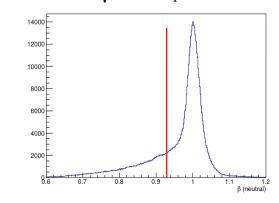
\rightarrow Electron:

Identification with

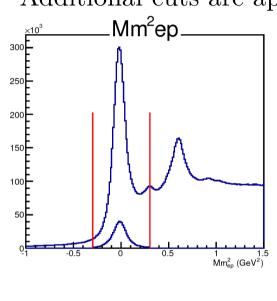
$$DC + CC + EC$$

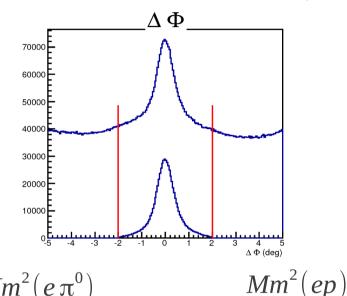
Rejection of the π^- with EC and CC

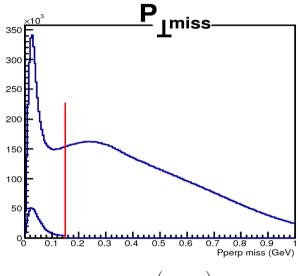
Proton:


Identified with DC + SC

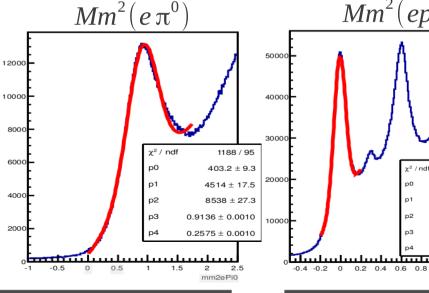
Cut on:
$$\Delta \beta = \beta_{measured}^{SC} - \beta_{calculated}^{DC} (M_p) = \frac{d}{ct} - \frac{p}{\sqrt{p^2 + M_p^2}}$$

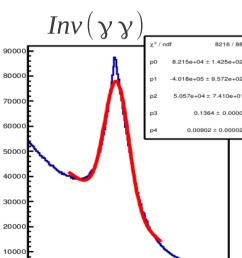

0.6 0.4 0.2 0.6 0.5 1 1.5 2 2.5 33 0 (GeV)


ightharpoonup Photon:


Identified with IC and/or EC Rejection of the neutrons in EC with β neutral > 0.92

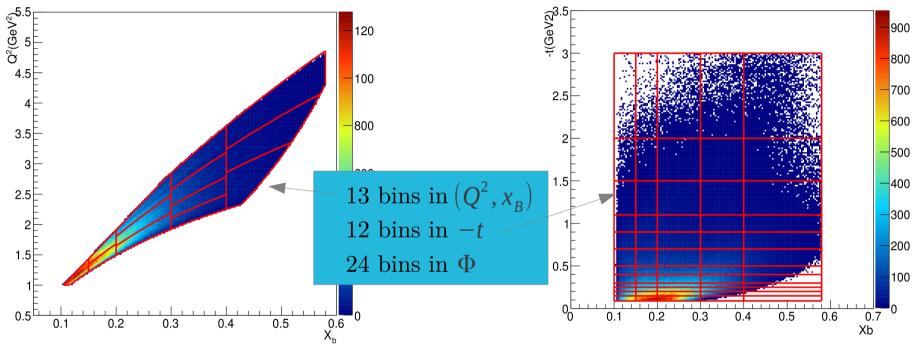
• Additional cuts are applied to ensure the exclusivity of the DVCS process:



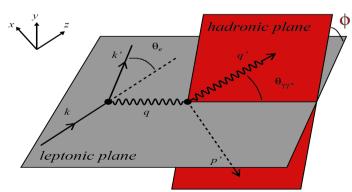


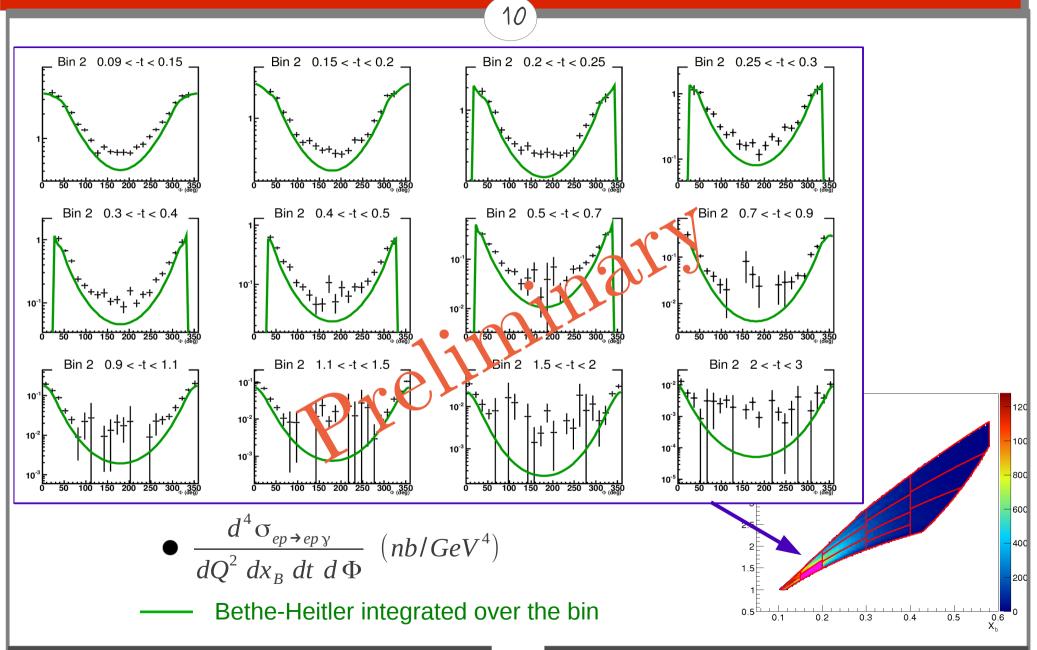
• Background :

$$ep \rightarrow ep \pi^0 \rightarrow ep \gamma(\gamma)$$


Between 10 to 20 $\,\%$

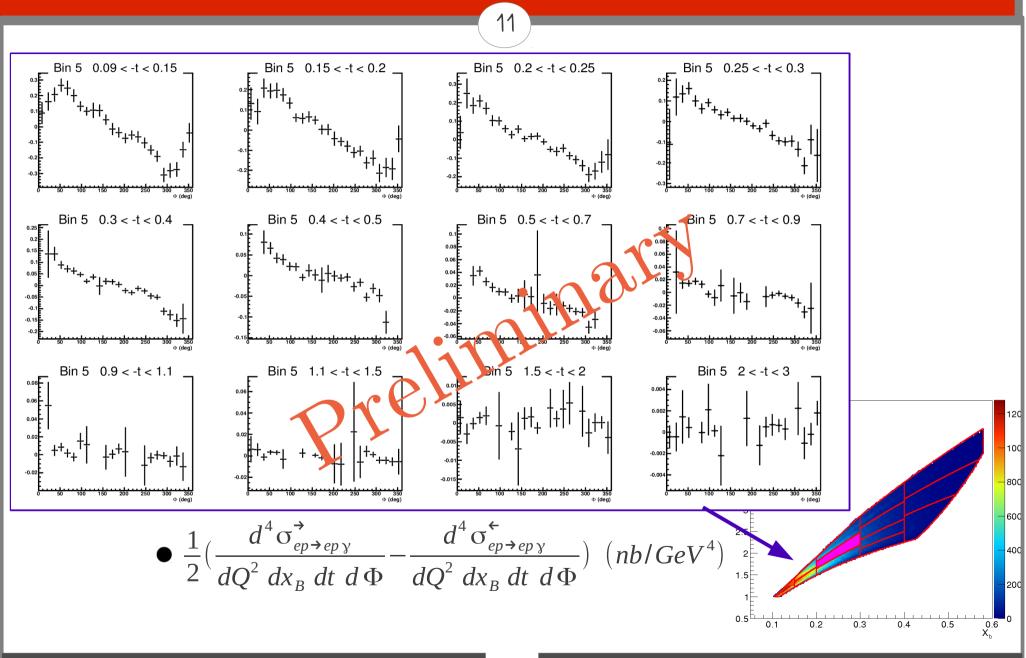
Kinematic coverage of the e1-DVCS data and binning


 $Q^2 > 1$, $0.1 < x_B < 0.58$, $21 < \theta_e < 45$, $p_e > 0.8$, W > 2


The kinematics of the DVCS reaction is defined by 4 independent variables :

$$Q^2, x_B, -t, \Phi$$

→ 4-dimensional binning


Unpolarized cross sections

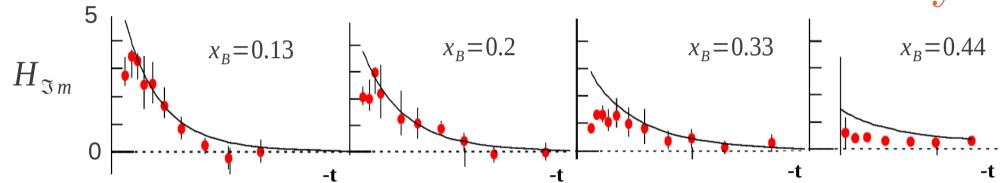
PANDA collaboration meeting 09/10/12

Baptiste GUEGAN

Difference of polarized cross sections

PANDA collaboration meeting 09/10/12

Baptiste GUEGAN


12)

Model-independent fitting procedure:

At fixed (Q^2, x_B, t) , extraction of the CFFs from the DVCS observables

CFFs are combinations of GPDs

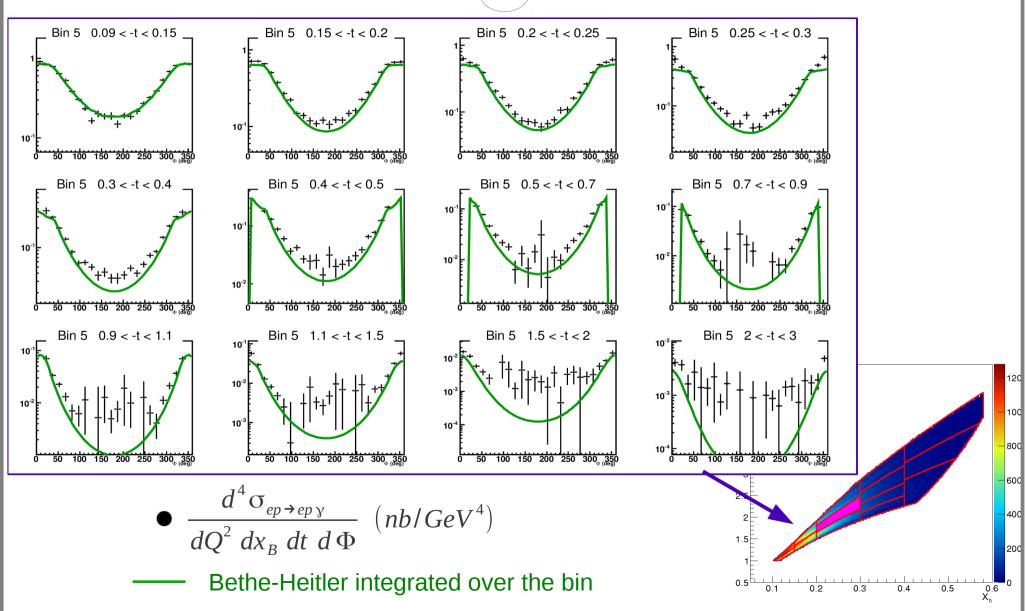
Preliminary

• Results of model-independent fit

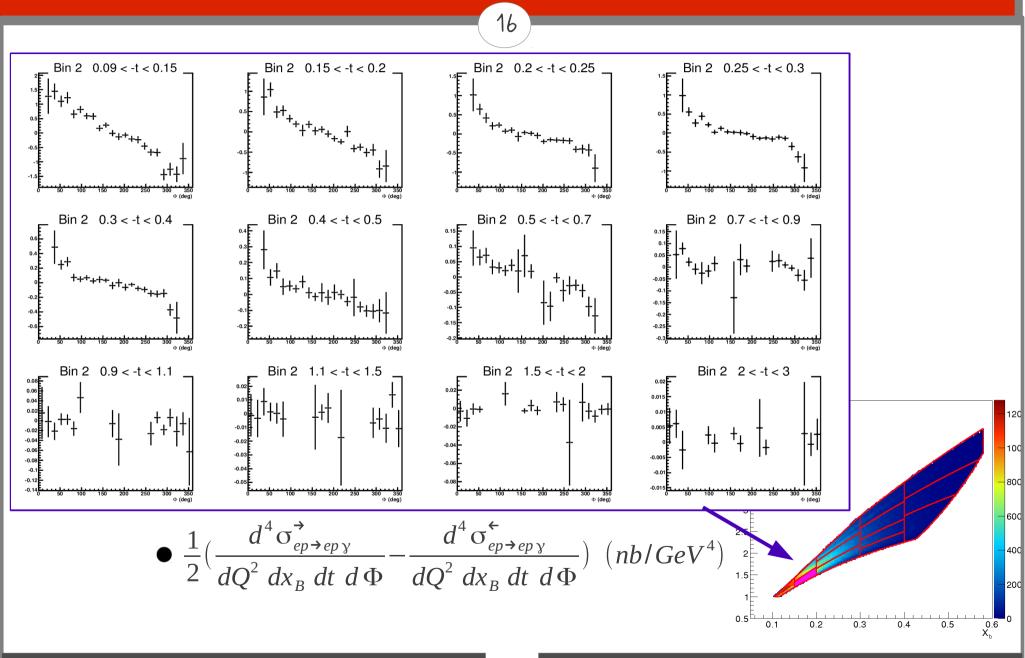
VGG model prediction

 $H_{\mathfrak{I}m}$: the t-slope reflects the size of the probed object:

Large t-slope $\langle --- \rangle$ extended object

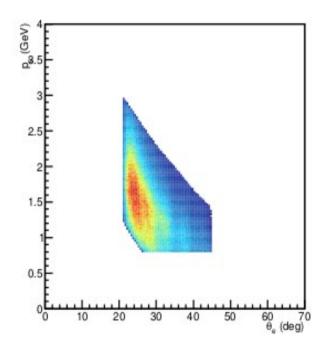

Small t-slope $\langle --- \rangle$ localized object

- The sea quarks (low x) spread to the periphery of the nucleon
- The valence quarks (large x) remain in the center

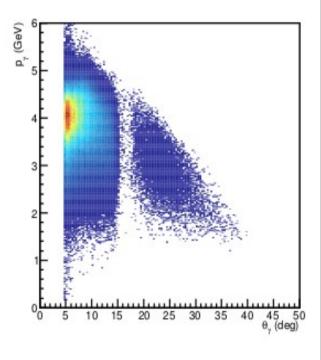

- Extraction of DVCS unpolarized and polarized cross sections in the largest kinematic domain ever explored in the valence region
- Extraction of Compton Form Factors by fitting simultaneously the unpolarized and polarized is in progress
- Dedicated GPD program at Jlab 12GeV : \Longrightarrow Target spin asymmetry A_{UT} , A_{LT}
 - \longrightarrow Target spin asymmetry A_{LU}
 - DVMP: pseudoscalar/vector mesons

Unpolarized cross sections

15

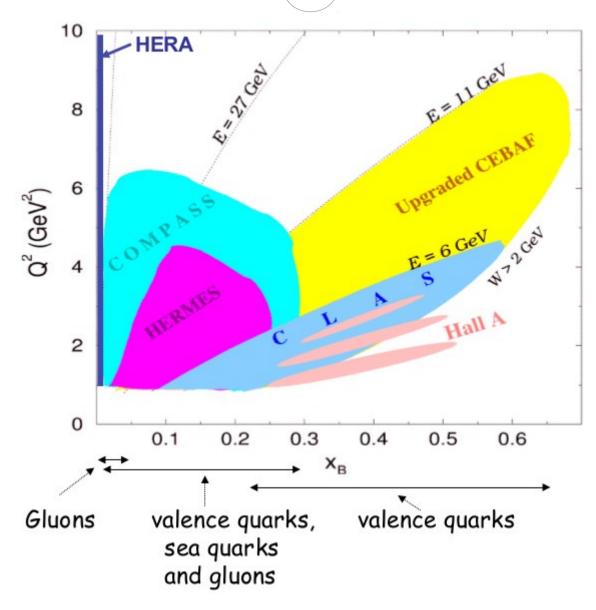


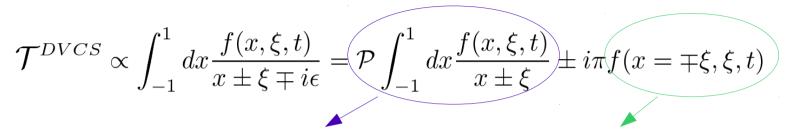

Difference of polarized cross sections



PANDA collaboration meeting 09/10/12

Baptiste GUEGAN





Four different possible spin-helicity transition of the nucleon-quark system

Real part	Imaginary part
$\mathcal{H}_{Re}(\xi,t) = \mathcal{P} \int_0^1 dx [H(x,\xi,t) - H(-x,\xi,t)] C^+(x,\xi)$	$\mathcal{H}_{Im}(\xi,t) = H(\xi,\xi,t) - H(-\xi,\xi,t)$
$\mathcal{E}_{Re}(\xi,t) = \mathcal{P} \int_0^1 dx [E(x,\xi,t) - E(-x,\xi,t)] C^+(x,\xi)$	$\mathcal{E}_{Im}(\xi,t) = E(\xi,\xi,t) - E(-\xi,\xi,t)$
$\tilde{\mathcal{H}}_{Re}(\xi,t) = \mathcal{P} \int_0^1 dx [\tilde{H}(x,\xi,t) + \tilde{H}(-x,\xi,t)] C^-(x,\xi)$	$\tilde{\mathcal{H}}_{Im}(\xi,t) = \tilde{H}(\xi,\xi,t) + \tilde{H}(-\xi,\xi,t)$
$\tilde{\mathcal{E}}_{Re}(\xi,t) = \mathcal{P} \int_0^1 dx [\tilde{E}(x,\xi,t) + \tilde{E}(-x,\xi,t)] C^-(x,\xi)$	$\tilde{\mathcal{E}}_{Im}(\xi,t) = \tilde{E}(\xi,\xi,t) + \tilde{E}(-\xi,\xi,t)$
	i

With:
$$C^{\pm}(x,\xi) = \frac{1}{x-\xi} \pm \frac{1}{x+\xi}$$

21

	Sensitivity	Experiment
$\sigma_{unp} = \sigma^{\to} + \sigma^{\leftarrow}$	$\propto \mathcal{H}_{Re}$	H1 ((2001), (2005), (2008)) ZEUS ((2003) , (2009)) Hall-A (2006) Hall-B (E1-DVCS experiment: data under analysis)
$\sigma_{pol} = \sigma^{\rightarrow} - \sigma^{\leftarrow}$	$\propto \mathcal{H}_{Im}$	Hall-A (2006) Hall-B (E1-DVCS experiment: data under analysis)
\mathcal{A}_C	$\propto \mathcal{H}_{Re}$	HERMES ((2007), (2008), (2009))
${\cal A}_{LU}$	$\propto \mathcal{H}_{Im}$	HERMES ((2001) , (2009)) Hall-B ((2001) , (2008))
\mathcal{A}_{UL}	$\propto \mathcal{H}_{Im}, ilde{\mathcal{H}}_{Im}$	Hall-B (2006) HERMES (2010) Hall-B (Eg1-DVCS experiment: data under analysis)
$oxed{\mathcal{A}_{LL}}$	$\propto \mathcal{H}_{Re}, ilde{\mathcal{H}}_{Re}$	HERMES (2010) Hall-B (Eg1-DVCS experiment: data under analysis)
\mathcal{A}_{UT}	$\propto \mathcal{E}_{Im}$	HERMES (2008) Hall-B proposal
\mathcal{A}_{LT}	$\propto \mathcal{H}_{Re}, \mathcal{E}_{Re}$	HERMES (2011) Hall-B proposal

Model-independent fit, at fixed (Q^2, x_B, t) of DVCS observables with MINUIT + MINOS

8 unknowns (the CFFs), non-linear problem, strong correlations Bounding the domain of variation of the CFFs (5xVGG)

22

	Sensitivity	Experiment	
$\sigma_{unp} = \sigma^{\to} + \sigma^{\leftarrow}$	$\propto {\cal H}_{Re}$	H1 ((2001), (2005), (2008)) ZEUS ((2003) , (2009)) Hall-A (2006) Hall-B (E1-DVCS experiment: data under analysis)	
$\sigma_{pol} = \sigma^{\rightarrow} - \sigma^{\leftarrow}$	$\propto \mathcal{H}_{Im}$	Hall-A (2006) Hall-B (E1-DVCS experiment: data under analysis)	
\mathcal{A}_C	$\propto \mathcal{H}_{Re}$	HERMES ((2007), (2008), (2009))	
${\cal A}_{LU}$	$\propto \mathcal{H}_{Im}$	HERMES ((2001) , (2009)) Hall-B ((2001) , (2008))	
\mathcal{A}_{UL}	$\propto \mathcal{H}_{Im}, ilde{\mathcal{H}}_{Im}$	Hall-B (2006) HERMES (2010) Hall-B (Eg1-DVCS experiment: data under analysis)	
\mathcal{A}_{LL}	$\propto \mathcal{H}_{Re}, ilde{\mathcal{H}}_{Re}$	HERMES (2010) Hall-B (Eg1-DVCS experiment: data under analysis)	
\mathcal{A}_{UT}	$\propto \mathcal{E}_{Im}$	HERMES (2008) Hall-B proposal HERMES (2011) Hall-B proposal	
\mathcal{A}_{LT}	$\propto \mathcal{H}_{Re}, \mathcal{E}_{Re}$		

Model-independent fit, at fixed (Q^2, x_B, t) of DVCS observables with MINUIT + MINOS

8 unknowns (the CFFs), non-linear problem, strong correlations Bounding the domain of variation of the CFFs (5xVGG)