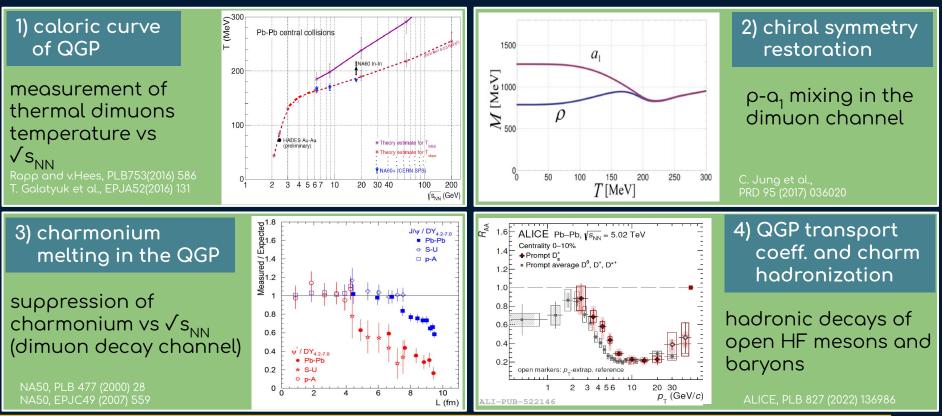

# Prospects with NA60+

Roberta Arnaldi INFN Torino (Italy)

Physics opportunities with proton beams at SIS100, Wuppertal, 6-9 February 2024

# the NA60+ project

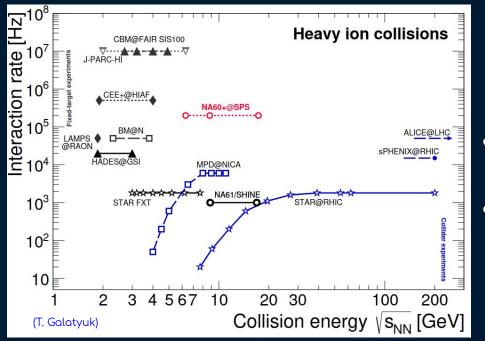
- New experiment at the CERN SPS to explore the QCD phase diagram at high baryon chemical potential (µ<sub>B</sub>)
- NA60+ will perform precision studies of hard and electromagnetic processes
  - accessing muon pair production from threshold up to m<sub>µµ</sub> ~ 4 GeV/c<sup>2</sup> (dilepton continuum + quarkonia)
  - measuring hadronic decays of strange and charm hadrons




• A beam energy scan between  $\sqrt{s_{_{NN}}}$  ~ 6 - 17 GeV  $_{_{\rm T. Ulrich}}$  will allow us to access the  $\mu_B$  region ~220 - 550 MeV

Physics opportunities with proton beams at SIS100

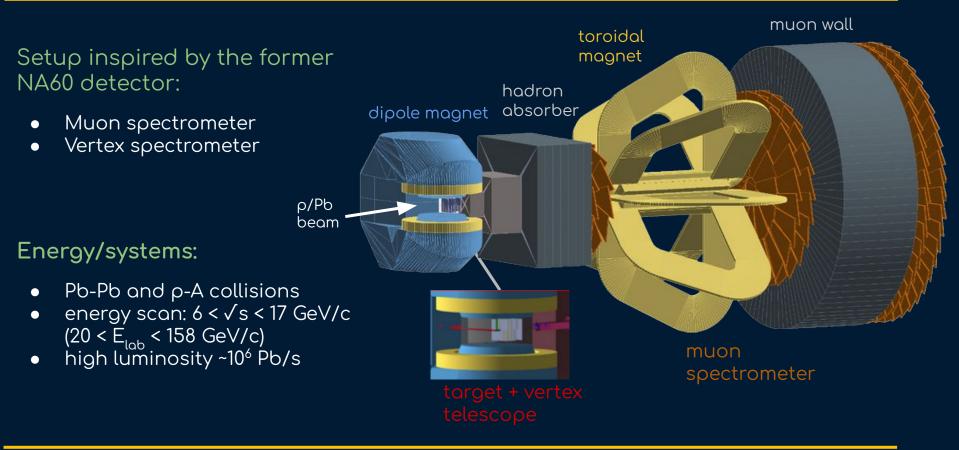
# the NA60+ physics program


#### Several new and unique measurements

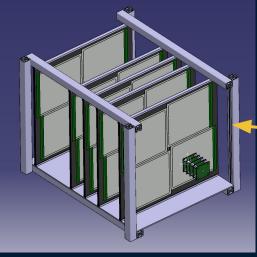


Roberta Arnaldi

## uniqueness of NA60+


The NA60+ program needs a large luminosity to search for rare QGP probes




This luminosity can be collected with PbPb interactions rates > 10<sup>5</sup> Hz, reachable with 10<sup>6</sup> s<sup>-1</sup> beam intensity in a fixed target environment

- NA60+ is unique, for energy coverage AND interaction rate, in the heavy-ion landscape
- NA60+ is complementary to experiments accessing:
  - different (hadronic) observables in the same energy range (STAR BES, NICA, NA61)
  - similar observables in a lower energy range (CBM)

### the NA60+ detector



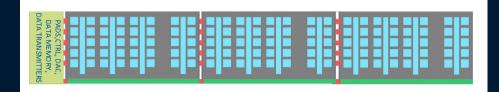
### the vertex region



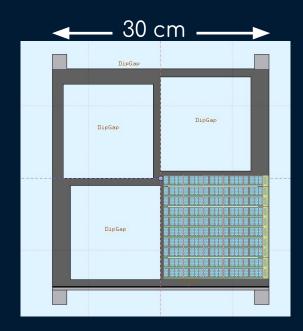


- Vertex spectrometer: 5 layers of MAPS detectors
- Target system:
  - AA: 5 Pb sub-targets, 1.5 mm thick each
  - ο pA: several sub-targets (e.g. Be, Cu, In, W, Pb) simultaneously exposed to the beam

BEAM (10<sup>6</sup> Pb/s)

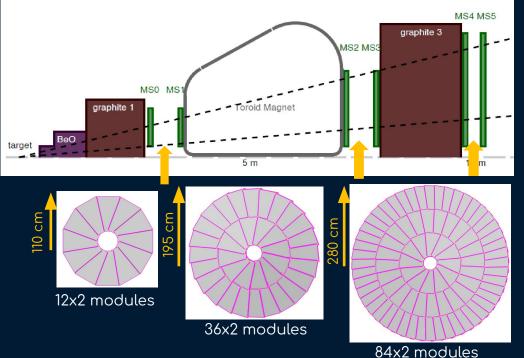

Roberta Arnaldi

### the vertex telescope R&D


High charged particle multiplicity in Pb-Pb collisions (up to dN<sub>ch</sub>/dy = 450) → high granularity, fast and radiation hard detectors in the vertex region

Use of state-of-the-art Monolithic Active Pixel Sensors

- synergy with ALICE ITS3 → first large area stitched sensor (MOSS) is currently being tested
- sensor based on 25 mm long units, replicated several times through stitching up to 15 cm length for NA60+

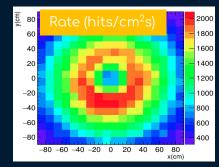



- few tens of microns of Si  $\rightarrow$  material budget < 0.1% X<sub>0</sub>
- spatial resolution  $\leq 5 \, \mu m$
- cooling with airflow and water



# the muon spectrometer

#### 6 tracking stations, with a modular structure



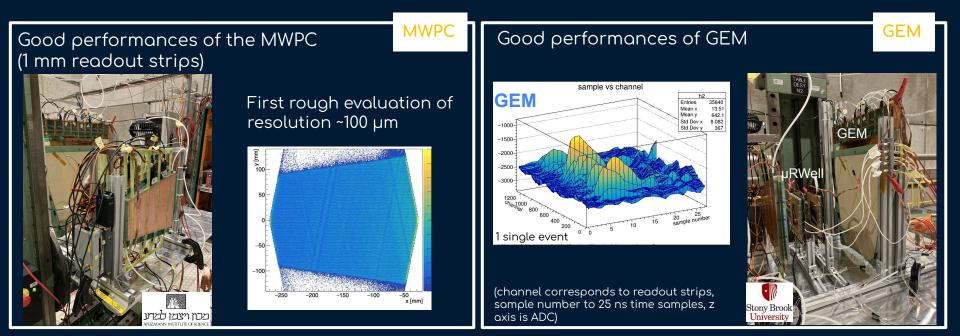

Muon spectrometer position will be varied (rails), to cover mid-rapidity at different  $\sqrt{s}$ 

Thick absorber (235 cm BeO +C) → modest rates (FLUKA) already in the upstream stations

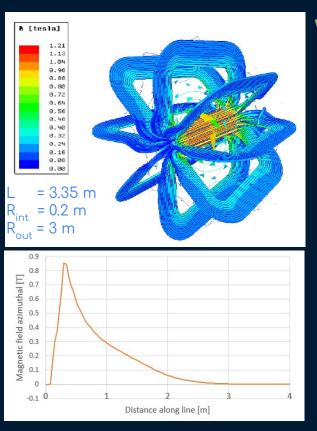
-

for 10<sup>6</sup> ions/s beam, rate of charged particle ~2 kHz/cm<sup>2</sup>




GEM or MWPC detectors can match these rates

### the muon spectrometer R&D


Ongoing discussions on the final spectrometer set-up, various possible solutions, as

- GEM for upstream stations (MS0-MS1)
- MWPC for downstream stations (MS2-MS5)

First prototypes modules characterised in a Pb test beam at CERN (Fall 23)



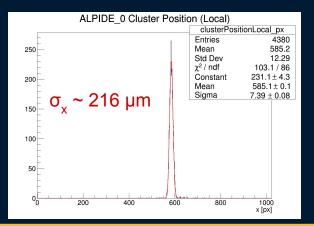
# the toroidal magnet R&D

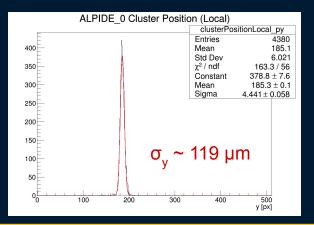



#### Warm magnet

- Eight sectors with 12 turns per coil
- Light design  $\rightarrow$  low material budget in the acceptance area

#### **Prototype (1:5 scale)** built and tested to check calculations and investigate mechanical solutions


B measurement □ agreement with simulations by 3%



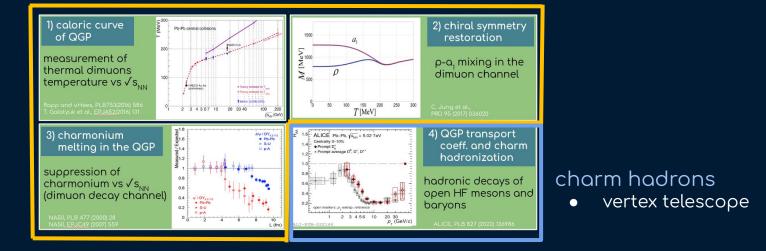

Roberta Arn<u>aldi</u>

### beam for NA60+

- NA60+ will be installed in the CERN EHN1 PPE138 area along the H8 beam line
- very stringent beam\_requests at all energies (from 20-30 A GeV to 160 A GeV)
  - high-intensity (10<sup>7</sup> Pb/spill)
  - extremely focussed sub-mm beam (vertex spectrometer will have 6 mm hole)
    - ongoing beam optics studies
      - promising results from high intensity tests (up to 2.4 10<sup>6</sup> Pb/spill at 150 GeV) at SPS in 2022 and 2023

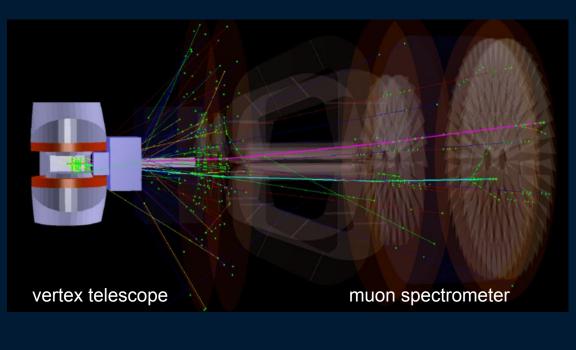





## physics performances of NA60+

#### Collision systems

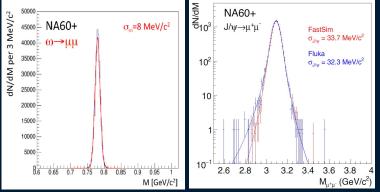
- PbPb
  - $\rightarrow$  data taking: 1 month per year
- ρΑ
  - $\rightarrow$  data taking at the same energies as AA collisions, with similar integrated luminosity



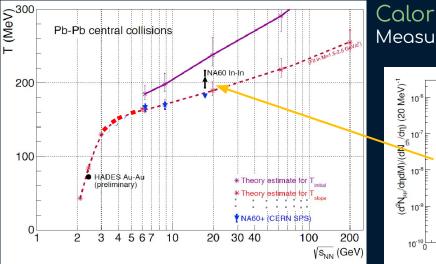

- vertex telescope
- muon spectrometer



12


## dimuons in NA60+




#### Muon tracks

- matching (in coordinates and momentum space) of tracks in vertex and muon spectrometer
- measure muon kinematics before multiple scattering and energy loss

#### very good mass resolution



### thermal dimuons



#### Caloric curve of the QGP Measurements only at top SPS energy and at very low energy

In-In dN<sub>ef</sub>/dtp-30 • excess dimuons • Renk/Ruppert • Hees/Rapp • Dusling/Zahed • 0.5 1 1.5 2 2.5 M (GeV) HADES, Nature Phys. 15(2019) 1040 NA60, EPJC 61(2009) 711

dilepton  $T_{slope}$  measurement  $\Box$  (average) temperature of the early stage of the system

SPS energy

accurate information on the region close to the deconfinement transition temperature
 possible signal of a 1<sup>st</sup> order phase transition

### thermal dimuons in NA60+

50 MeV

dN/dM per

 $10^{6}$ 

10

10

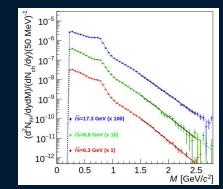
 $10^{3}$ 

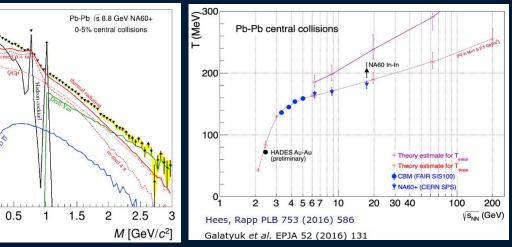
10<sup>2</sup>

10

Thermal radiation yield

- accessible up to M= 2.5-3GeV/c<sup>2</sup>
- dominated by p contribution at low mass


#### Drell-Yan contribution


□ to be estimated via p-A measurements

### Open charm contribution

negligible dimuon source



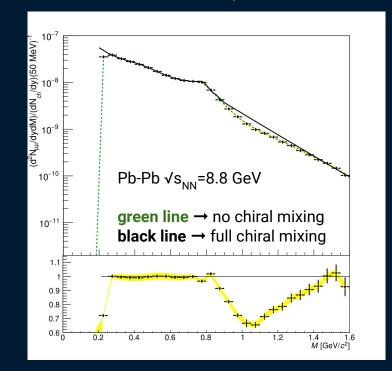




### ~1-3% uncertainty on the evaluation of $T_{slope}$

- accurate mapping of T<sub>s</sub>
   √s-dependence around T<sub>pc</sub>
   strong sensitivity to possible
- strong sensitivity to possible flattening of the caloric curve due to 1<sup>st</sup> order transition

Physics opportunities with proton beams at SIS100


### <u>ρ-a, mixing in NA60+</u>

Chiral symmetry restoration investigated with the measurement of the p-a1 mixing

Full  $\rho\text{-}a_1$  chiral mixing detected studying the modification of the dimuon continuum

→ a 20-30% enhancement is expected in the region 0.8 < M < 1.5 GeV/c<sup>2</sup> w.r.t. no mixing

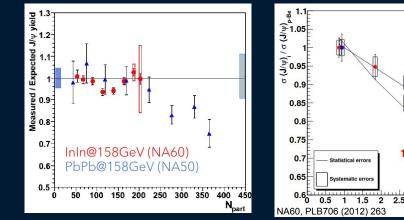
NA60+ could clearly detect a signal of chiral symmetry restoration

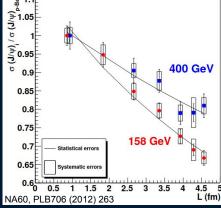


# charmonium at low 🗸 s

#### AA:

#### **SPS**


hot matter effects suppression


initial state effects (anti)shadowing x<sub>p1</sub>~10<sup>-1</sup> for y~0

final CNM effects sizable breakup in nuclear matter т~0.5 fm/c for y~0

accurate measurements from NA50/NA60 at top SPS energy

- ~30% J/ $\psi$  anomalous suppression in central PbPb, beyond CNM  $\bullet$
- consistent with J/ $\psi$  suppression from  $\psi$ (2S) and  $\chi_{c}$  feed-down
- significant contribution from CNM effects





pA:

precise measurement of CNM

- anti-shadowing contribution
- nuclear break-up dominant, stronger at lower  $\sqrt{s}$  $\bullet$

Roberta Arnaldi

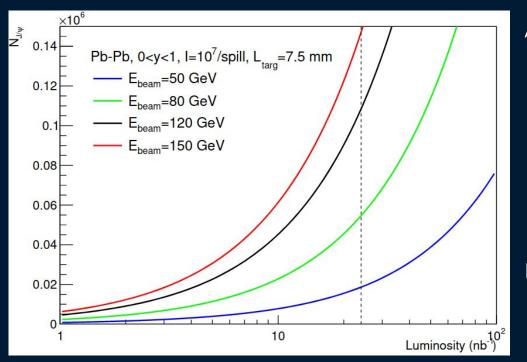
## <u>charmonium in NA60+</u>

Quarkonium never studied below top SPS energies

### 1

#### AA: onset of charmonium suppression

accessible via energy scan


- evaluate the threshold temperature of the charmonium melting correlating the onset with T measured via thermal dimuons
- pA: cold nuclear matter effects
  - CNM effects increase at low  $\sqrt{s}$ 
    - mandatory (at the same  $\sqrt{s}$  as AA) for a correct evaluation of hot matter effects
    - disentangle the various contributions (shadowing, nuclear breakup...)
  - pA: intrinsic charm

expected enhanced charm production at large  $x_{F}$ 

- fixed target is the ideal configuration  $\rightarrow$  enhancement is expected closer to mid-y
- dominant effect even with 0.1% probab. of intrinsic charm contribution in the proton (R. Vogt. PRC 103 (2021)3, 035204)

### charmonium in AA

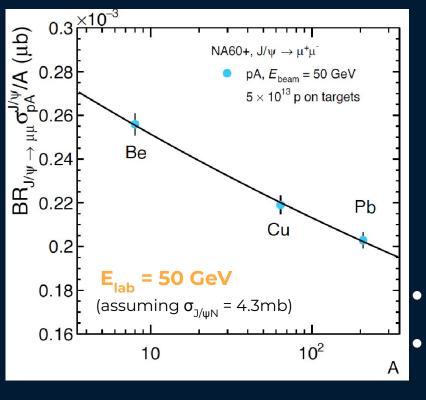
High luminosity is needed to cope with the low production cross sections at low  $\sqrt{s}$ 



Assuming:

 I<sub>beam</sub>~10<sup>7</sup> Pb/spill, 7.5 mm target, 1 month data taking→ L<sub>int</sub>~24 nb<sup>-1</sup>

19


• a factor 3 overall suppression (CNM+ QGP)

NA60+ can aim at O(104) 1/11 a

~O(10<sup>4</sup>) J/ψ at 50 GeV ~O(10<sup>5</sup>) J/ψ at 158 GeV

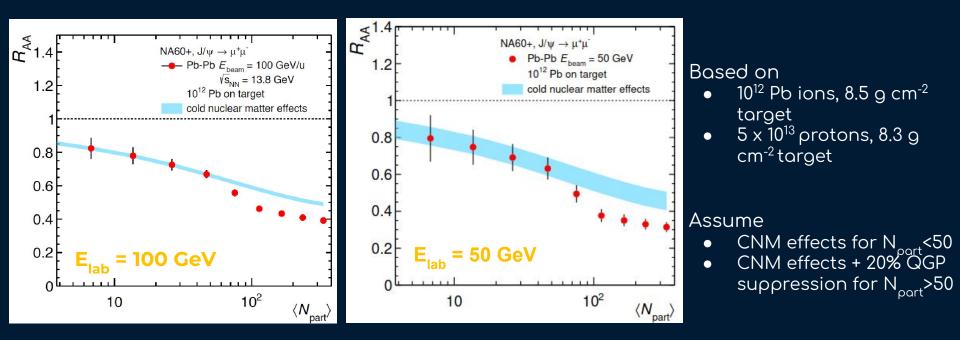
# charmonium in pA

**ρ-A data taking mandatory** to calibrate CNM effects



Assuming:

- I<sub>beam</sub>~5 10<sup>13</sup> ρ on target, target thickness 8.3 g/cm2
- NA60+ can aim at

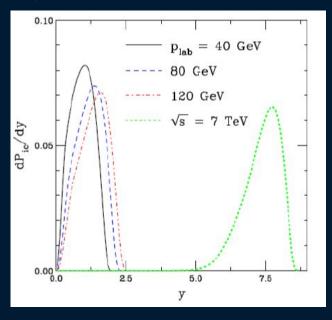

 $R_{AA}$  evaluation

~8000 J/ψ at 50 GeV ~60000 J/ψ at 158 GeV

pA data will provide an estimate of CNM effects extrapolating the pA measurements down to A = 1, we can estimate  $\sigma_{00}$ , to be used in the

Physics opportunities with proton beams at SIS100

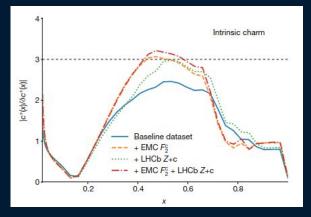
# charmonium R<sub>A</sub>




Precise evaluation of anomalous suppression within reach even at low energy Uncertainties on CNM ( $\sigma_{abs}$ ) are ~6 - 15% at 158 and 50 GeV, respectively

### <u>intrinsic charm</u>

Intrinsic charm component of the hadron wave function |uudccbar>


enhanced charm production in the forward region



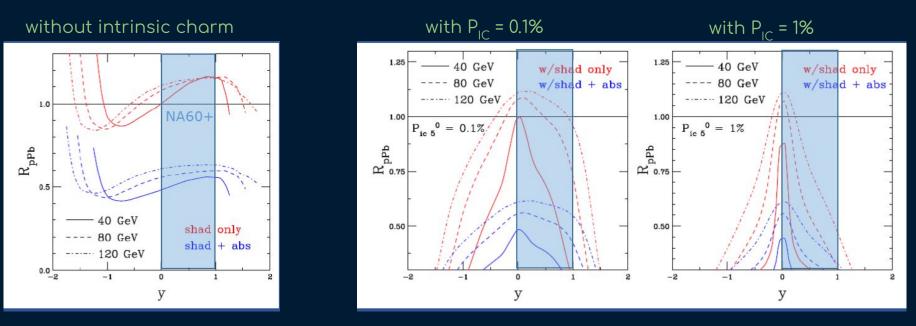
R. Vogt PRC 103, 035204 (2021) R. Vogt arXiv:2207.04347

- at collider energies, the region where the IC effects can be observed is at very large y
- for fixed-target , low  $\sqrt{s}$  , the enhancement is closer to mid-y

 first evidence recently claimed by NNPDF group based on LHCb data (Nature 608,483(2022)



#### Roberta Arn<u>aldi</u>


### <u>intrinsic charm</u>

ullet

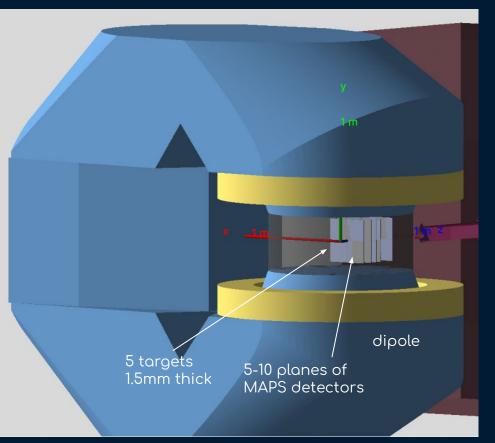
EPPS16 shadowing  $\bullet$ 

p-Pb collisions:

- $\sigma_{abs}$  = 9, 10, 11 mb,  $\tilde{E}_{lab}$  = 120, 80, 40 GeV Intrinsic charm content P<sub>ic</sub> varied between 0.1 and 1%



 $R_{oPb}$  shape is dominated by intrinsic charm already with  $P_{ic}$  = 0.1%


Roberta Arnaldi

## open charm in NA60+

Measurement performed through hadronic decays reconstructed in the vertex telescope

|                             | Mass<br>(MeV) | cτ<br>(μm) | decay                                     | BR                      |
|-----------------------------|---------------|------------|-------------------------------------------|-------------------------|
| D <sup>0</sup>              | 1865          | 123        | K⁻π⁺                                      | 3.95%                   |
| D⁺                          | 1869          | 312        | K⁻፹⁺፹⁺                                    | 9.38%                   |
| D <sup>+</sup> <sub>s</sub> | 1968          | 147        | фπ⁺                                       | 2.24%                   |
| ∧ <sub>c</sub>              | 2285          | 60         | рК⁻т⁺<br>рК <sup>0</sup> ₅<br><b>Л</b> π⁺ | 6.28%<br>1.59%<br>1.30% |

Combinatorial background reduced via geometrical selection on the displaced decay-vertex topology



#### Physics opportunities with proton beams at SIS100

## <u>open charm in AA at low √s</u>

#### QGP transport properties

Charm diffusion coefficient depends on the medium T, being larger in the hadronic than in QGP phases


#### At SPS

- temperatures closer to T<sub>PC</sub> can be explored
- hadronic phase is a large part of the collision evolution
   sensitivity to hadronic interactions
   input for precision measurements at LHC

### charm thermalization

#### Impact on charm of a shorter-lived medium can be explored

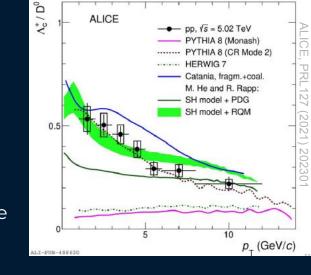
• current measurements on HF-decay electron v<sub>2</sub> at RHIC  $\sqrt{s_{_{NN}}}$ = 39 and 62 GeV/c show small v<sub>2</sub> wrt 200 GeV, not conclusive on v<sub>2</sub>>0



#### Roberta Arnaldi

# open charm in AA at low 🗸 s

hadronisation mechanisms

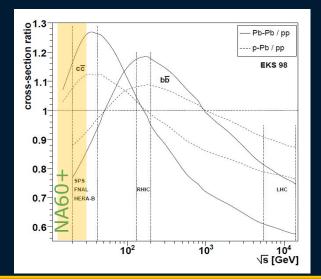

Measure the relative abundances of charm-hadrons  $(D^0, D^+, D^+_s \text{ mesons and } \Lambda_c \text{ baryons})$  in a high  $\mu_B$  environment

- Strange/non-strange meson ratio  $(D_{s}/D^{0})$ 
  - enhanced in AA due to recombination in the strangeness rich QGP
- Baryon/meson ratio ( $\Lambda_c$ /D)
  - enhanced in AA in case of hadronisation via coalescence
  - interesting also in pp and pA, as observed at LHC

#### total charm cross section

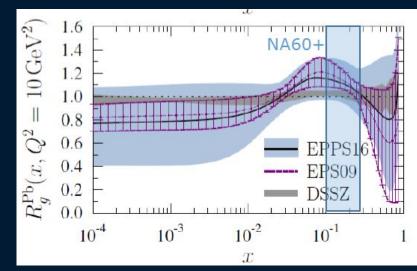
Limited measurements so far (NA60,NA49) because of low yields

- precise measurement requires to reconstructs mesons and baryons ground states
- ideal reference for charmonia




## open charm in pA at low 🗸 s

nuclear PDFs via D meson production in pA

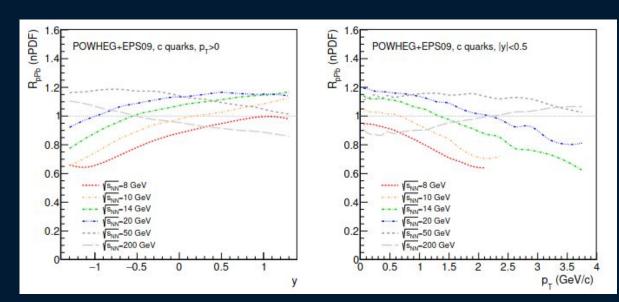

#### NA60+ will cover the range 0.1 < $x_{Bi}$ < 0.3 at $Q^2$ ~10-40 GeV<sup>2</sup>

- EMC and anti-shadowing regions accessible,
- PDFs poorly constrained by existing data



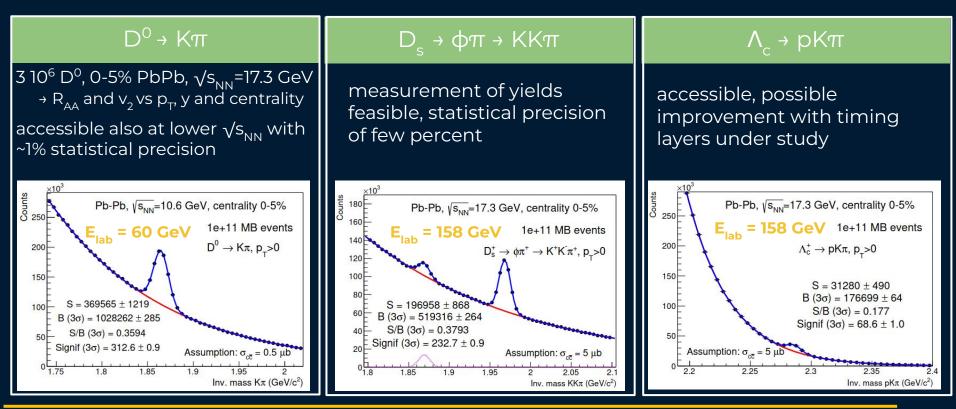
5

Roberta Arnaldi




### <u>open charm in pA in NA60+</u>

nuclear PDFs via D meson production in pA


NA60+ will use several nuclear targets, from Be to Pb

- access to the A-dependence of nPDF
- precise inputs to nPDF from D production ratios pA/pBe at different √s, vs y and p<sub>T</sub>



## charm-hadrons in NA60+

with 10<sup>11</sup> MB Pb-Pb collisions (1 month of data taking)



Roberta Arnaldi

Physics opportunities with proton beams at SIS100

29

### the NA60+ timeline



- Project is part of CERN Physics Beyond Collider Initiative
- LOI released at the end of 2022 (arXiv:2212.14452)
- Expect proposal in 2024
- Aim is taking data in 2029, after LHC LS3
  - 7-years running with Pb beam (one beam energy per year)
  - $\circ$   $\,$  proton beams for reference and dedicated p-A studies

https://na60plus.ca.infn.it/

**B(I)** 

### the NA60+ collaboration

igodol

#### Letter of Intent: the NA60+ experiment

C. Ahdida<sup>1</sup>, G. Alocco<sup>2,3</sup>, F. Antinori<sup>4</sup>, M. Arba<sup>3</sup>, M. Aresti<sup>2,3</sup>, R. Arnaldi<sup>5</sup>, A. Baratto Roldan<sup>1</sup>, S. Beolè<sup>6,5</sup>, A. Beraudo<sup>5</sup>, J. Bernhard<sup>1</sup>, L. Bianchi<sup>6,5</sup>, M. Borysova<sup>7,8</sup>, S. Bressler<sup>7</sup>, S. Bufalino<sup>9,5</sup>, E. Casula<sup>2,3</sup>, C. Cicalò<sup>3</sup>, S. Coli<sup>5</sup>, P. Cortese<sup>10,5</sup>, A. Dainese<sup>4</sup>, H. Danielsson<sup>1</sup>, A. De Falco<sup>2,3</sup>, K. Dehmelt<sup>11</sup>, A. Drees<sup>11</sup>, A. Ferretti<sup>6,5</sup>, F. Fionda<sup>2,3</sup>, M. Gagliardi<sup>6,5</sup>, A. Gerbershagen<sup>12</sup>, F. Geurts<sup>13</sup>, V. Greco<sup>14,15</sup>, W. Li<sup>13</sup>, M.P. Lombardo<sup>16</sup>, D. Marras<sup>3</sup>, M. Masera<sup>6,5</sup>, A. Masoni<sup>3</sup>, L. Micheletti<sup>1</sup>, L. Mirasola<sup>2,3</sup>, F. Mazzaschi<sup>1,6</sup>, M. Mentink<sup>1</sup>, P. Mereu<sup>5</sup>, A. Milov<sup>7</sup>, A. Mulliri<sup>2,3</sup>, L. Musa<sup>1</sup>, C. Oppedisano<sup>5</sup>, B. Paul<sup>2,3</sup>, M. Pennisi<sup>6,5</sup>, S. Plumari<sup>14</sup>, F. Prino<sup>5</sup>, M. Puccio<sup>1</sup>, C. Puggioni<sup>3</sup>, R. Rapp<sup>17</sup>, I. Ravinovich<sup>7</sup>, A. Rossi<sup>4</sup>, V. Sarritzu<sup>2,3</sup>, B. Schmidt<sup>1</sup>, E. Scomparin<sup>5</sup>, S. Siddhanta<sup>3</sup>, R. Shahoyan<sup>1</sup>, M. Tuveri<sup>3</sup>, A. Uras<sup>18</sup>, G. Usai<sup>2,3</sup>, H. Vincke<sup>1</sup>, I. Vorobyev<sup>1</sup>

1 .European Organization for Nuclear Research (CERN), Geneva, Switzerland

- 2 .Dipartimento di Fisica dell'Università di Cagliari, Cagliari, Italy
- 3 .INFN, Sezione di Cagliari, Cagliari, Italy
- 4 .INFN, Sezione di Padova, Padova, Italy
- 5 .INFN, Sezione di Torino, Turin, Italy
- 6 .Dipartimento di Fisica dell Università di Torino, Turin, Italy
- 7 .Department of Particle Physics and Astrophysics, Weizmann Insitute of Science, Rehovot, Israel
- 8 .Kyiv Institute for Nuclear Research (KINR), Natl. Acad. of Sci. of Ukraine (NASU)
- 9 .Dipartimento DISAT del Politecnico di Torino, Turin, Italy
- Dipartimento di Scienze e Innovazione Tecnologica dell'Università del Piemonte Orientale, Alessandria, Italy
- 11 .Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York, USA
- 12 .Department of Radiation Oncology, University of Groningen, Groningen, The Netherlands
- 13 .Department of Physics and Astronomy, Rice University, Houston, Texas, USA
- 14 .Dipartimento di Fisica e Astronomia dell'Università di Catania, Catania, Italy
- 15 .INFN, Laboratori Nazionali del Sud, Catania, Italy
- 16 .INFN, Laboratori Nazionali di Frascati, Frascati, Italy
- Cyclotron Institute and Department of Physics and Astronomy, Texas A&M University, College Station, Texas, USA
- 18 .Institut de Physique des 2 Infinis de Lyon, Université de Lyon, CNRS/IN2P3, Lyon, France

- the LoI was signed by 62 physicists, engineers, technicians
- support also from members of the QGP theory community



- funding for the R&D phase since 2020 allowed us to complete the LoI preparation
- ongoing contacts to strengthen the Collaboration

Physics opportunities with proton beams at SIS100

#### Roberta Arn<u>aldi</u>

### <u>conclusions</u>





Precision studies of **em and hard probes** in the range  $6 < \sqrt{s_{_{NN}}} < 17$  GeV are currently lacking NA60+: new heavy-ion experiment proposed at CERN SPS

designed for high precision measurements of thermal dileptons, charmonium, open-heavy flavors

- project is part of CERN Physics Beyond Collider Initiative
- technical proposal expected in 2024, data taking in 2029
- present stage: consolidation of collaboration and completion of R&D

https://na60plus.ca.infn.it/

Feedback on physics program and participation to the NA6O+ realization is welcome!

Roberta Arnaldi

### backup slides

Roberta Arnaldi

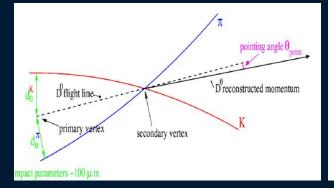
### Example: D-mesons performance studies

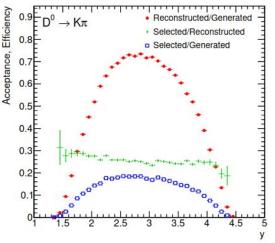
#### Fast simulation:



D-meson: signal simulated with  $p_T$  and y distributions from POWHEG-BOX + PYTHIA Combinatorial background:  $\pi$ , K, p with multiplicity,  $p_T$  and y shapes from NA49

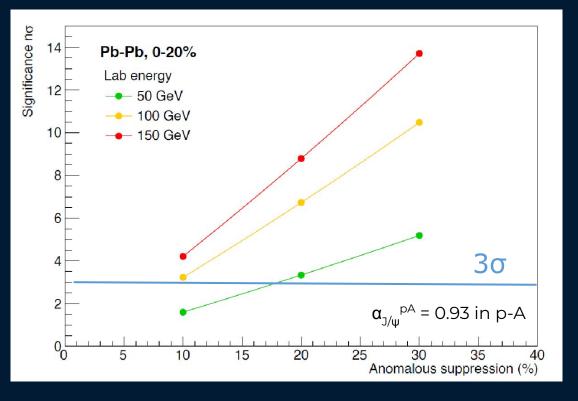



Particle transport: carried out in the VT, with parametrized simulation of its resolution Track reconstruction: Kalman filter


3

D-meson vertex reconstructed from decay tracks Geometrical selections based on decay vertex topology

D<sup>0</sup> in central PbPb:

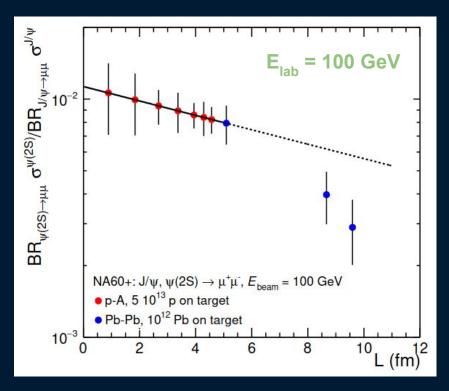

- initial S/B ~10<sup>-7</sup>
- after selections S/B ~0.5





30

# charmonium R



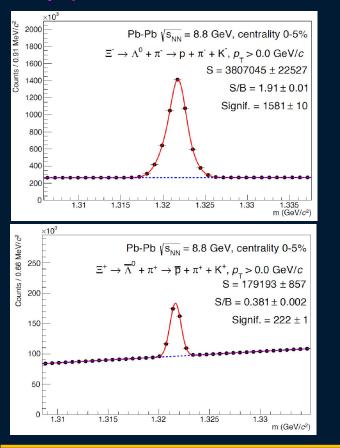

 10% anomalous suppression signal detectable at 3σ for E<sub>lab</sub>>100 AGeV

 20% anomalous suppression signal detectable at 3σ for E<sub>lab</sub>>50 GeV

# <u>ψ(2S) in ρA+AA</u>

Good charmonium resolution (30 MeV for  $J/\psi$ ) will help  $\psi$ (2S) measurements:




Assume

• stronger suppression for  $\psi(2S)$  than  $J/\psi$ 

 $\psi(2S)/\psi$  measurement feasible down to  $E_{_{lab}}$  ~ 100 GeV

Lower E<sub>lab</sub> would require larger beam intensities/longer running times

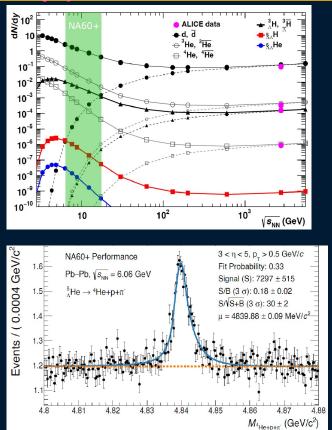
### hyperons



Hyperon decays simulated with EVtGen, decay products propagated in the VT using the fast simulation of NA60+
 Background from hadron production 
 NA49 results

#### Channels studied

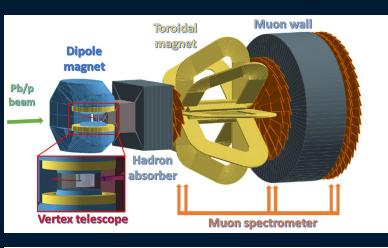
 $\Lambda^0$ 

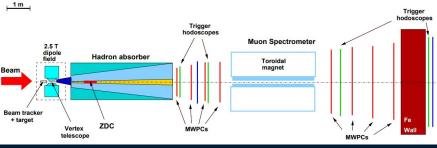

$$ightarrow p+\pi^ \Xi^-
ightarrow \Lambda^0+\pi^-$$

$$\Omega^- o \Lambda^0 + K^-$$

and charge conjugated

- **Topological selections** applied
- BDT employed to enhance the significance of the signal
- Among the variables:
  - Product of the impact parameter of decay tracks,
  - Distance of closest approach between the decay track
  - Decay length and the cosine of the pointing angle
- **D** Also  $\phi \square$  KK and  $K_{\varsigma} \square \pi\pi$  were studied


### <u>hyperons</u>




Low energy HI collisions
 high baryon density favours the production of hypernuclear clusters

Separation of heavily ionising particles from ordinary hadrons
size of the clusters associated with the track

# NA60+ vs NA60





Some important improvements:

#### Physics program extended to lower energy

Fundamental to explore rare probes in high-µ<sub>R</sub> region

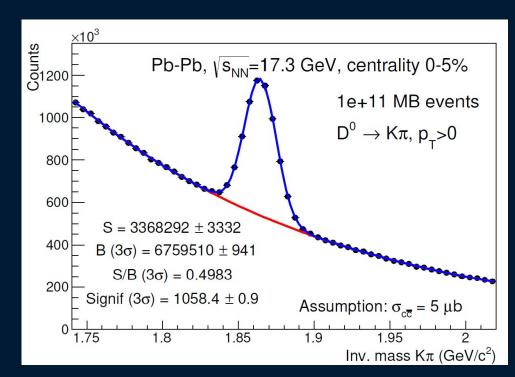
#### Larger angular acceptance

 cope with lab rapidity shift when varying energy down to low SPS energy

Access new observables (open charm etc.) NA60: (di)muon trigger ~ 5 kHz NA60+: MB trigger (>100 kHz)

#### State-of-the art detectors

Pixel size: from 50x425 μm<sup>2</sup>(NA60) to 30x30 μm<sup>2</sup>(NA60+ sensors (from 2% to 0.1% X<sub>0</sub>) improved resolution and signal over background from 21 to 8 MeV at the ω mass from 70 to 30 MeV at the J/ψ mass


### NA60+ vs NA61

#### NA61

| Year | Beam             | #days | #events | $\#(\mathrm{D}^0+\overline{\mathrm{D}^0})$ | #(D <sup>+</sup> + D <sup>-</sup> ) |  |
|------|------------------|-------|---------|--------------------------------------------|-------------------------------------|--|
| 2022 | Pb at 150A GeV/c | 42    | 250M    | 38k                                        | 23k                                 |  |
| 2023 | Pb at 150A GeV/c | 42    | 250M    | 38k                                        | 23k                                 |  |
| 2024 | Pb at 40A GeV/c  | 42    | 250M    | 3.6k                                       | 2.1k                                |  |

### N.B.: different assumptions for open charm cross section

#### NA60+



Physics opportunities with proton beams at SIS100