

Development of Double Drift Harmonic Buncher Concepts

GSI Accelerator Seminar 16.11.2023

Ezgi Sunar

- Motivation
- BCDC* Multi-Particle Tracking Programm
- Applications

GSI Accelerator Seminar

Harmonic Bunch Formation & DDHB* Concept

DDHB*: Double Drift Harmonic Buncher BCDC*: Beam Creation of DC beam

Historical Evolution of Ion Linac Conceptual Design:

" Effiziente Hochfrequenz-Linearbeschleuniger für leichte und schwere Ionen" - U. Ratzinger, 1998

Motivation:

Check double harmonic bunching systematically and see under which conditions does it functional and effective.

- * Make bunching within a shorter distance
- * Get high particle acceptance
- * Get bunching formation more controllable
- * Have smaller longitudinal emittance at low current

E.Sunar

DC Beam:

Multi-Harmonic Buncher System

E.Sunar

Harmonic Bunch Formation

Pozdeyev, E, Brandon, J, Bultman, N, Rao, X, York, R, and Zhao, Q. Report on Design, Development, and Characterization of a Coaxial Resonator Based Single-gap Gridless Multiharmonic Buncher. United States: N. p., 2013. Web. doi:10.2172/1073065.

E.Sunar

Harmonic Bunch Formation

One-Harmonic Double Drift Buncher System

Double Drift Harmonic Buncher Concept (DDHB)

GSI Accelerator Seminar

E.Sunar

Vs

One Harmonic Double-Drift Buncher One single f-buncher

15

GSI Accelerator Seminar

E.Sunar

Beam axis

Double Drift Harmonic Buncher Concept

E.Sunar

$$W_i(\Delta\phi_i(z_1)) = \Delta W_i(\Delta\phi_i(z_0)) - q \cdot V_2 \cdot \sin(2\Delta\phi_i(z_1))$$

Triple Harmonics System: Overlapped Harmonics

Dependence Of 4-Parameters In DDHB Concept

E.Sunar

 L_1 / L_2 ratio

Beam Creation for DC beam

E.Sunar

GSI Accelerator Seminar

BCDC

Chart of BCDC

E.Sunar

E.Sunar

GSI Accelerator Seminar

16.11.2023

Space Charge Calculation: Field Interpolation

E.Sunar

With Field Interpolation

GSI Accelerator Seminar

E.Sunar

NNB: Results For Various Bunch Lengths

z = 48.2 mm

E.Sunar

z = 62 mm

z = 34.4 mm

z = 20.7 mm

NNB: Output Distributions according to ON / OFF Status

GSI Accelerator Seminar

E.Sunar

APPLICATIONS

E.Sunar

Parameter Range for Applications :

	βλ/2 [mm]						
Frequency [MHz] [keV] [MHz] Input Energy	27	54	108				
60	63	32	16				
100	81	41	21				

Cavity 1 : f-frequency

Summary of Applications

ParameterInputDesignEnergy		Beam Current	Capture Rate	Acceptance Phase [deg]			
1	60 keV	0-10 mA	74-80%	$ \Delta \phi \le \pm 5^{\circ}$			
2	60 keV	0-30 mA	85 %	$ \Delta\phi \le \pm 20^\circ$			
3	100 keV	0-1 mA	70-77 %	$ \Delta \phi \le \pm 5^{\circ}$			

E.Sunar

E.Sunar

	ŝ	G	ő	2	ŝ,	ŝ	6	2	i	i	-	į	•	•	•	•	-	1
	-	-	-	-	-	-	-	-	-	-			•				-	1
	-	-	-	-	-	-	-	-	-	-							-	
	-	-	-	-	-	-	-	-	-	-			•				-	1
	•	•	•	•	•	•	•	•	•	•			•	•	•	•		1
•	•	•	•	•	•	•	•	•	•	•		;	•	•	•	•		1
	•	-	•	•	•	•	•	•		•	•	-	•	•	•	•	-	1
	•	•	•		•	•	•			:			•		•	:		
												i						
											1	10	J					

One Example for possible RFQ application:

Design Parameter 30 mA Input Energy [keV] 100Frequency (f - 2f) [MHz] 54, 108 Beam Current [mA] 30 mASynchronous Phase $-90^{\circ}, +90^{\circ}$ SCC %90, 0, 85 $L_1, L_2 \text{ [mm]}$ 110.2, 740.1 V_1, V_2 [kV] 5.0, 2.3

E.Sunar

GSI Accelerator Seminar

Capture $\%_{|\Delta\phi_f| \leq 20^\circ}$ Capture $\%_{|\Delta\phi_f| \leq 10^\circ}$ Capture $\%_{|\Delta\phi_f| \leq 5^\circ}$ Capture % $|\Delta \phi_f| \leq 4^\circ$ Capture $\%_{|\Delta\phi_f| \leq 3^\circ}$ Capture $\%_{|\Delta\phi_f| \leq 2^\circ}$

85.09 47.99 22.8118.2413.819.21

One Example for possible RFQ application:

E.Sunar

One Example for possible RFQ application: Longitudinal Beam Dynamics

E.Sunar

Conclusion:

- The investigation of the DDHB concept has been systematically checked and it shows the functionality as well as the efficiency w.r.t. :
 - Bunch formation in a shorter distance and more controllable
 - Sharp bunched beam depending on the next unit
 - High particle acceptance
 - Smaller longitudinal emittance at low current
- In addition to the concept, another task of this thesis was to develop a dedicated multi-particle tracking beam dynamics code -BCDC by computing the space charge effect during the bunch formation, starting from a DC beam.
 - NNB

SCC **E.Sunar**

GSI Accelerator Seminar

Thank you for your attention!

