Exploring the meson spectrum with 3π photoproduction and the search for the exotic hybrid meson $\pi_1(1600)$ at the GlueX experiment

KHuK annual meeting 2024

Farah Afzal 06.12.2024

University of Bonn

Building blocks of matter - Light hadrons

Exotic mesons

- Quantum numbers: J = L + S, $P = (-1)^{L+1}$, $C = (-1)^{L+S}$
- QCD allows other **color neutral** configurations beyond $q\bar{q}$ states

- Hybrid mesons \rightarrow test gluonic degrees of freedom of QCD

Exotic mesons

- Quantum numbers: J = L + S, $P = (-1)^{L+1}$, $C = (-1)^{L+S}$
- QCD allows other **color neutral** configurations beyond $q\bar{q}$ states

- Hybrid mesons \rightarrow test gluonic degrees of freedom of QCD
- How to identify hybrid mesons in the meson spectrum?
 - Spin-exotic: $J^{PC} = 0^{+-}, 1^{-+}, 2^{+-}, 3^{-+} \dots$ (forbidden for $q\bar{q}$ states!)
 - \rightarrow "Smoking gun" for finding evidence for exotic mesons!
- Experimental confirmation of exotic mesons is an essential direct test of QCD!

Predicted light meson spectrum - Lattice QCD

[HadSpec: J. Dudek et al. PRD 88 094505(2013)]

Predicted light meson spectrum - Lattice QCD

[HadSpec: J. Dudek et al. PRD 88 094505(2013)]

Predicted light meson spectrum - Lattice QCD

COMPASS, Phys. Rev. D 95, 032004 (2017)

Goal of the Emmy Noether project

Goal:

- New insights into the meson spectrum with unique, unexplored production mechanism
- Confirm $\pi_1(1600)$ through decay mode: $\pi_1(1600) o
 ho \pi o 3\pi$
- Explore the meson excitation spectrum via 3π photoproduction with the GlueX experiment:
 - $\gamma p \rightarrow \Delta^{++} \pi^+ \pi^- \pi^-$
 - $\gamma p \rightarrow \Delta^{++} \pi^- \pi^0 \pi^0$
 - High statistics $\sim 10 \times 10^6$ events already available

Goal of the Emmy Noether project

Jefferson Lab in Newport News, Virginia

Jefferson Lab in Newport News, Virginia

CEBAF accelerator

high intensity electron beam $E_{e^-} < \! 12 \,\, {\rm GeV}$

Hall D: GlueX experiment

The GlueX experiment at CEBAF (JLab)

 \rightarrow Gives insight to production processes

Experiment is optimized for light meson spectroscopy

- Coherent Bremsstrahlung on diamond radiator
- Beam intensity: $1-5 \times 10^7 \gamma/s$ in peak
- GlueX Phase-I completed ($\int L = 125 \text{ pb}^{-1}$ in coherent peak), Phase-II: ongoing, 3-4 imes Phase-I data

Y WWW

p

7

Analyzing decay angles of $\Delta^{++} o p\pi^+$ gives access to Spin-density matrix elements!

Study of exchange mechanism with SDMEs in $\gamma p \rightarrow \pi^- \Delta^{++} \rightarrow \pi^- \pi^+ p$

- Spin-density matrix elements (SDMEs) ρ_{ii}^{k} describe full angular distribution of Δ^{++} production and decay
- Linearly polarized beam provides access to nine linearly independent SDMEs

$$W(\theta,\varphi,\Phi) = \frac{3}{4\pi} (\rho_{33}^0 \sin^2 \theta + \rho_{11}^0 \left(\frac{1}{3} + \cos^2 \theta\right) - \frac{2}{\sqrt{3}} Re[\rho_{31}^0 \cos \varphi \sin 2\theta + \rho_{3-1}^0 \cos 2\varphi \sin^2 \theta] - P_\gamma \cos 2\Phi \left[\rho_{33}^1 \sin^2 \theta + \rho_{11}^1 \left(\frac{1}{3} + \cos^2 \theta\right) - \frac{2}{\sqrt{3}} Re[\rho_{31}^1 \cos \varphi \sin 2\theta + \rho_{3-1}^1 \cos 2\varphi \sin^2 \theta]\right] - P_\gamma \sin 2\Phi \frac{2}{\sqrt{3}} Im[\rho_{31}^2 \sin \varphi \sin 2\theta + \rho_{3-1}^2 \sin 2\varphi \sin^2 \theta]])$$

F. Afzal et. al. (GlueX), arXiv:2406.12829

RUHR UNIVERSITÄT BOCHUM **RU**B

Spin-Density Matrix Elements in Δ^{++} production

- First precise determination of the *t*-dependence of the $\Delta^{++}(1232)$ SDMEs
- Data provide important constraints on the Regge-theory models
- Relative sign ambiguity of two helicity amplitude couplings in the JPAC model can be resolved with GlueX data

Charge exchange mechanism - $\pi^- \Delta^{++}$

- Separation of unnatural-parity (U) and natural-parity (N) exchanges $\rho_{ij}^{N/U}=\rho_{ij}^0\pm\rho_{ij}^1$

- JPAC model: π (a₂) is the dominant unnatural (natural) exchange
- Important for charge-exchange reactions e.g. $\gamma p o \eta' \pi \Delta^{++}$, $\gamma p o 3\pi \Delta^{++}$

• Focus on $\rho^- \to \pi^- \pi^0$ recoiling off Δ^{++}

ightarrow Important also for $\pi_1(1600)$ search in $\eta'\pi^-\Delta^{++}$

- Analyze entire $\pi^-\pi^-$ spectrum \rightarrow Disentangle resonance contributions \rightarrow e.g. excited ρ states
 - ightarrow Important step for developing and testing analysis tools

Analysis of $\Delta^{++}3\pi$

Exploring the meson spectrum with 3π photoproduction

- The GlueX experiment has acquired an unprecedented polarized photoproduction dataset and the meson spectroscopy program is well underway
- Emmy Noether research project provides
 - Unique opportunity to explore meson spectrum with 3π photoproduction
 - Possibility to verify the existence of spin-exotic hybrid meson $\pi_1(1600)$
 - Important direct test of QCD
- Project will deepen our understanding of QCD in the non-perturbative regime
- I look forward to having my own research group within the excellent environment at RUB

Thank you!