Lattice QCD results on conserved charge fluctuations

Frithjof Karsch Bielefeld University

Faculty of Physics

with a lot of input from 'HotQCD,

in particular, Sipaz Sharma Jishnu Goswami Mugdha Sarkar

- QCD phase diagram constraining the location of a critical endpoint
- Precision results for 2nd order cumulants
- B Higher order cumulants: Skewness, kurtosis and beyond
- Charmed cumulants: Towards continuum extrapolated results

Critical behavior in QCD

Fluctuation observables in QCD

- chiral condensate:
$$\langle \bar{\psi}\psi \rangle_l = \frac{\partial P/T}{\partial m_l/T}$$
, $\langle \bar{\psi}\psi \rangle_l = (\langle \bar{\psi}\psi \rangle_u + \langle \bar{\psi}\psi \rangle_d)/2$
- chiral order parameter: $M = \frac{2}{f_K^4} \left[m_s \langle \bar{\psi}\psi \rangle_l - m_l \langle \bar{\psi}\psi \rangle_s \right]$
 $m_l = (m_u + m_d)/2$

– chiral susceptibility:
$$\chi_M = m_s \left(\frac{\partial M}{\partial m_u} + \frac{\partial M}{\partial m_d} \right)$$
 magnetic

– mixed chiral susceptibility:
$$\chi_t = T rac{\partial M}{\partial T}$$
 mixed

– conserved charge fluctuations:
$$\chi_{X}=T^{4}rac{\partial^{4}P/T^{4}}{\partial\mu_{X}^{4}}\Big|_{\mu_{X}=0}$$
 thermal

$$X=B,\ Q,\ S,\ldots$$

З

Higher order cumulants - Taylor expansion of QCD EoS and the HRG -

Taylor expansion of the QCD pressure: $rac{P}{T^4} = rac{1}{VT^3} \ln Z(T,V,\mu_B,\mu_Q,\mu_S)$

$$\boxed{\frac{P}{T^4} = \sum_{i,j,k=0}^{\infty} \frac{1}{i!j!k!} \chi^{BQS}_{ijk}(T) \left(\frac{\mu_B}{T}\right)^i \left(\frac{\mu_Q}{T}\right)^j \left(\frac{\mu_S}{T}\right)^k}$$

cumulants of net-charge fluctuations and correlations:

$$\chi^{BQS}_{ijk} = \left. rac{\partial^{i+j+k} P/T^4}{\partial \hat{\mu}^i_B \partial \hat{\mu}^j_Q \partial \hat{\mu}^k_S}
ight|_{\mu_{B,Q,S}=0} \quad, \quad \hat{\mu}_X \equiv rac{\mu_X}{T}$$

cumulants at vanishing chemical potential provide information on the equation of state as well as freeze-out conditions at small non-zero chemical potential

HotQCD data collection for (2+1)-flavor QCD-EoS

EoS:2017: arXiv:1701.04325

	$N_{ au}=6$					$N_{ au} = 8$				$N_{ au} = 12$				
	$oldsymbol{eta}$	m_l	T[MeV	V] #con	f. β	m_l	T[MeV]] #conf	β	m_l	T[Me	eV] #con	nf.	
	5.980	0.00435	135.2	9 8120	00 6.248	5 0.00307	134.64	180320	0 6.640	0.00196	134.9	94 58	34	
	6.010	0.00416	139.7	1 12079	$00 \parallel 6.28!$	5 0.00293	140.45	17211($) \parallel 6.680$	0.00187	140.4	44 58	33	
	6.045	0.00397	145.0	5 12077	$0 \ 6.31$	5 0.00281	144.95	138150	$) \parallel 6.712$	0.00181	144.9	97 138	46	
	6.080	0.00387	150.5	9 7939	$00 \parallel 6.35$	4 0.00270	151.00	107510	$0 \parallel 6.754$	0.00173	151.1	10 142	00	
	6.120	0.00359	157.1°	6618	6.390	0.00257	156.78	135730) 6.794	0.00167	157.1	13 154	76	
	6.150	0.00345	162.2	8 7966	$50 \parallel 6.423$	3 0.00248	162.25	115850	$) \parallel 6.825$	0.00161	161.9	94 167	72	
	6.170	0.00336	165.9	8 4976	$50 \ 6.44!$	5 0.00241	165.98	120270	$) \parallel 6.850$	0.00157	165.9	91 195	42	
	6.200	0.00324	171.1	5 12270	$00 \ 6.47$	4 0.00234	171.02	139980	$) \parallel 6.880$	0.00153	170.7	77 212	20	
	6.225	0.00314	175.7	6 12273	6.50	0.00228	175.64	13307() 6.910	0.00148	175.7	76 123	03	
EoS 2022:times new confs.added O(20)allarXiv:2202.09184confs.times new confs.all										all new				
		$N_{ au}$			= 8			$\frac{N_{\tau}=12}{100000000000000000000000000000000000$					$\frac{N_{\tau} = 16}{100}$	
			$\frac{\beta}{\beta}$	m_l	T[MeV]	#conf.	β	m_l	T[MeV]	#conf.	$oldsymbol{eta}$	m_l	T[MeV]	#conf.
			6.175 ().003307	125.28	2,200,000	C C 40	0.00100	195 94	220 447	C 025	0.00145	195 00	17071
			0.245 6 285	0.00307	134.84 140.62	1,275,380 1,508,555	6.620	0.00196	135.24	330,447	6.935 6.072	0.00145	135.80	17071
			0.200	0.00295 0.00281	140.02 145.11	1,590,555 1,550,003	6712	0.00187	140.00 145.40	441,110 416,703	0.975 7 010	0.00139 0.00139	140.00 145.05	25000
			6.354	0.00281 0.00270	140.11 151.14	1,359,003 1 286 603	6754	0.00131 0.00173	140.40 151.62	$\frac{410,703}{323,738}$	7.010 7.054	0.00132 0.00129	140.90 152 10	26965
			6.390	0.00210 0.00257	156.92	1,200,000 1,602,684	6.794	0.00167	157.75	299.029	7.094	0.00129 0.00124	152.13 158.21	20505 21656
			6.423	0.00248	162.39	1,437,436	6.825	0.00161	162.65	214.671	7.130	0.00119	163.50	18173
			6.445	0.00241	166.14	$1,\!186,\!523$	6.850	0.00157	166.69	156,111	7.156	0.00116	167.53	19926
			6.474	0.00234	171.19	$373,\!644$	6.880	0.00153	171.65	144,633	7.188	0.00113	172.60	17163
			6.500	0.00228	175.84	$294,\!311$	6.910	0.00148	176.73	131,248	7.220	0.00110	177.80	3282

A. Bazavov et al. (HotQCD), Phys. Rev. D 105 (2022) 074511, arXiv:2202.09184 & arXiv:1701.04325

A. Bazavov et al. (HotQCD), Phys. Rev. D 105 (2022) 074511, arXiv:2202.09184 & arXiv:1701.04325

Up to 8th order cumulants are used frequently – imag. chem. pot. extrapolations –

S. Borsanyi et al. , JHEP 10 (2018) 205, arXiv:1805.04445

Comparing Taylor series and Pade resummation

Taylor series

$$\begin{split} \frac{\Delta p}{T^4} &\equiv \frac{p(T,\mu_B)}{T^4} - \frac{p(T,0)}{T^4} = \sum_{k=1}^{\infty} P_{2k}(T) \left(\frac{\mu_B}{T}\right)^{2k} , \ P_{2k} \sim \chi_{2k}^B \\ &= \frac{P_2^2}{P_4} \left(\bar{x}^2 + \bar{x}^4 + c_{6,2}\bar{x}^6 + c_{8,2}\bar{x}^8 + \ldots\right) \quad \begin{array}{l} \text{use} \ P_2 > 0, \ P_4 > 0 \\ &\bar{x} \equiv \sqrt{P_4/P_2} \ (\mu_B/T) \\ &c_{6,2} = \frac{P_6P_2}{P_4^2} \ , \ c_{8,2} = \frac{P_8P_2^2}{P_4^3} \end{split}$$

Pade approximation

pressure:
$$\frac{p(T, \mu_B)}{T^4}_{[nm]} = \frac{P_2^2}{P_4}P_{[nm]}$$

$$P_{[4,4]} = \frac{(1 - c_{6,2})\bar{x}^2 + (1 - 2c_{6,2} + c_{8,2})\bar{x}^4}{(1 - c_{6,2}) + (c_{8,2} - c_{6,2})\bar{x}^2 + (c_{6,2}^2 - c_{8,2})\bar{x}^4}$$

to this order: poles are obtained from a quadratic eq. in $\bar{x}^2 \sim \chi_4^B/\chi_2^B\cdot\hat{\mu}_B^2$

Poles of [n,n] Pade approximants in QCD

$$\hat{\mu}_{B,c}^{\pm} = \pm r_{c,4} e^{\pm i\Theta_{c,4}} , \ r_{c,4} = \sqrt{\frac{12\tilde{\chi}_{0}^{B,2}}{\tilde{\chi}_{0}^{B,4}}} \left| \frac{1 - c_{6,2}}{c_{6,2}^2 - c_{8,2}} \right|^{1/4} , \ c_{2k,2} = \frac{2\tilde{\chi}_{0}^{B,2}}{(2k)!\tilde{\chi}_{0}^{B,2k}} \left(\frac{12\tilde{\chi}_{0}^{B,2}}{\tilde{\chi}_{0}^{B,4}} \right)^{k-1}$$

complex poles move to real axis as temperature decreases

distance of complex poles from the origin is given by the Mercer-Roberts estimator for the radius of convergence

within current errors poles on the real axis (critical point) are possible only for $T \leq 135 {
m MeV} \;,\; \mu_B/T > 2.5$

higher statistics will sharpen the constraint

Pseudo-critical and critical temperatures

also: A. Y. Kotov et al., arXiv: 2105.09842

F. Karsch, EMMI-RRTF, November 2023

10

physical

masses

Summary: Phases of strong-interaction matter determination of T_c^0 puts an upper limit on T^{CEP}

Summary: Phases of strong-interaction matter determination of T_c^0 puts an upper limit on T^{CEP}

Baryon-Strangeness Correlations: A Diagnostic of Strongly Interacting Matter

V. Koch, A. Majumder, and J. Randrup

Nuclear Science Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA (Received 23 May 2005; published 24 October 2005)

The correlation between baryon number and strangeness elucidates the nature of strongly interacting matter, such as that formed transiently in high-energy nuclear collisions. This diagnostic can be extracted theoretically from lattice QCD calculations and experimentally from event-by-event fluctuations. The analysis of present lattice results above the critical temperature severely limits the presence of $q\bar{q}$ bound states, thus supporting a picture of independent (quasi)quarks.

182301-1

DOI: 10.1103/PhysRevLett.95.182301

PACS numbers: 25.75.Gz, 12.38.Gc, 12.38.Mh, 25.75.Nq

The principal goal of high-energy heavy-ion collisions is the creation and exploration of a novel state of matter in which the quarks and gluons are deconfined over distances considerably larger than that of a hadron [1]. It had originally been assumed that asymptotic freedom would cause such matter to behave as a plasma of massless quarks and gluons interacting with a relatively weak screened chromodynamic Coulomb force. While this picture is supported qualitatively by the rapid rise in the entropy density at a temperature of about $T_c \approx 170$ MeV, as obtained by lattice QCD calculations, the fact that the high-Tbehavior falls somewhat below that of an ideal gas of massless quarks and gluons [2] indicates that the chromodynamic plasma has a more complex structure.

Indeed, recent results from lattice QCD calculation on spectral functions [3–6] suggest the presence of bound, color-neutral states well above T_c . This has led to the suggestion that at moderate temperatures, $T \simeq 1 - 2T_c$, the system is composed of medium-modified (massive) quarks and gluons together with their (many and possibly colored) bound states [7–10].

Furthermore, jet quenching observed at the Relativistic Heavy-Ion Collider (RHIC) suggests that the matter formed is not hadronic [11]. Moreover, the RHIC collisions exhibit strong elliptic and radial collective flows that are consistent with predictions by ideal fluid dynamics [12,13]. If ideal hydrodynamics is indeed the correct framework, rapid thermalization must occur and this in turn would seem to rule out a weakly interacting plasma. Thus, the nature of the matter being created at RHIC is still not clarified and the purpose of this Letter is to offer a novel diagnostic tool for elucidating this issue by probing the relevant degrees of freedom and their correlations.

In particular, we will argue that the correlation between the strangeness S and the baryon number B provides a useful diagnostic for the presence of strong correlations between quarks and antiquarks. In order to understand this, consider first a situation in which the basic degrees of freedom are weakly interacting quarks and gluons. Then strangeness is carried exclusively by the s and \bar{s} quarks which in turn carry baryon number in strict proportion to their strangeness, $B_s = -\frac{1}{3}S_s$, thus rendering strangeness and baryon number strongly correlated. This feature is in stark contrast to a nadron gas in which the relation between strangeness and baryon number is less intimate. For example, at small baryon chemical potential the strangeness is carried primarily by kaons, which have no baryon number.

These elementary considerations lead us to introduce the following correlation coefficient,

$$C_{BS} \equiv -3 \frac{\sigma_{BS}}{\sigma_s^2} = -3 \frac{\langle BS \rangle - \langle B \rangle \langle S \rangle}{\langle S^2 \rangle - \langle S \rangle^2} = -3 \frac{\langle BS \rangle}{\langle S^2 \rangle}.$$
 (1)

The average $\langle \cdot \rangle$ is taken over a suitable ensemble of events and the last expression uses the fact that $\langle S \rangle$ vanishes. When the active degrees of freedom are individual quarks, the total strangeness is $S = \nu_{\bar{s}} - \nu_s$, while the baryon number can be expressed as $B = \frac{1}{3}(U + D - S)$, where $U = \nu_u - \nu_{\bar{u}}$ is the upness and $D = \nu_d - \nu_{\bar{d}}$ is the downness. Thus, if the flavors are uncorrelated, we have $\sigma_{RS} = -\frac{1}{3}\sigma_S^2$ and C_{RS} is unity.

In a gas of hadron resonances, the total baryon number is $B = \sum_k n_k B_k$ and its total strangeness is $S = \sum_k n_k S_k$, where the species k has baryon number B_k and strangeness S_k . If the multiplicities $\{n_k\}$ are uncorrelated, as is generally assumed in the standard statistical treatment [14], C_{BS} may be expressed in terms of the associated multiplicity variances $\sigma_k^2 \equiv \langle n_k^2 \rangle - \langle n_k \rangle^2 \approx \langle n_k \rangle$,

$$C_{BS} = -3 \frac{\sum_{k} \sigma_{k}^{2} B_{k} S_{k}}{\sum_{k} \sigma_{k}^{2} S_{k}^{2}} \approx -3 \frac{\sum_{k} \langle n_{k} \rangle B_{k} S_{k}}{\sum_{k} \langle n_{k} \rangle S_{k}^{2}}, \qquad (2)$$

where the approximate expression holds for Poisson statistics. Thus, in a gas of uncorrelated hadrons, the numerator receives contributions from only (strange) baryons (and antibaryons), while the denominator receives contributions also from (strange) mesons,

$$C_{BS} \approx 3 \frac{\langle \Lambda \rangle + \langle \bar{\Lambda} \rangle + \dots + 3 \langle \Omega^- \rangle + 3 \langle \bar{\Omega}^+ \rangle}{\langle \overline{K}^0 \rangle + \langle \overline{K}^0 \rangle + \dots + 9 \langle \Omega^- \rangle + 9 \langle \bar{\Omega}^+ \rangle}.$$
 (3)

While Eq. (1) [or its more explicit version (6)] holds

© 2005 The American Physical Society

Conserved charge correlations

baryon number – strangeness correlations

$$rac{\chi^{BS}_{11}(T,\mu_B)}{\chi^S_2(T,\mu_B)}\equiv rac{\langle BS
angle}{\langle S^2
angle}$$

$$C_{BS}=-3rac{\left\langle BS
ight
angle -\left\langle B
ight
angle \left\langle S
ight
angle }{\left\langle S^{2}
ight
angle -\left\langle S
ight
angle ^{2}}=-3rac{\left\langle BS
ight
angle }{\left\langle S^{2}
ight
angle }$$

Free Quark Gas

$$C_{BS} = -3 rac{\langle BS
angle}{\langle S^2
angle} = -3 rac{\pm 1}{3} \cdot (\mp 1) \ (\pm 1)^2 = 1$$

Hadron Resonance Gas (HRG)

$$C_{BS}pprox 3 \, rac{\langle\Lambda
angle+\langlear\Lambda
angle+\ldots\,+\,3\left<\Omega^{-}
ight>+3\left}{K^{0}+ar K^{0}+\ldots\,+\,9\left<\Omega^{-}
ight>+9\left}$$

Fluctuations and Correlations – precision calculation of all 2nd order cumulants –

scale setting used: colored af_K, black: r1/a

two constraints: only 4 out of 6 2nd order observables are independent

$$\chi^B_2 = 2\chi^{BQ}_{11} - \chi^{BS}_{11} \qquad \chi^S_2 = 2\chi^{QS}_{11} - \chi^{BS}_{11}$$

- exact relations in QCD for $\mu_X = 0$, X = B, Q, S- satisfied in HRG models to better than 1%

- well controlled continuum extrapolation

- continuum extrapolated results for all 2nd order cumulants in (2+1)-flavor QCD

D. Bollweg et al (HotQCD), Phys. rev. D104 (2021) 7, arXiv:2107.10011

2nd order cumulants: fluctuations and correlations

two constraints: only 4 out of 6

- continuum extrapolated results for all 2nd order cumulants in (2+1)-flavor QCD

D. Bollweg et al (HotQCD), Phys. rev. D104 (2021) 7, arXiv:2107.10011

2nd order cumulants: fluctuations and correlations

at T_{pc}	χ^{BQ}_{11}	χ^{BS}_{11}	χ^{QS}_{11}	$(\chi^Q_2)_{LT=4}$	χ_2^S	χ^B_2	χ^{BS}_{11}/χ^S_2	χ^{BQ}_{11}/χ^B_2
QCD[this work]	0.0243(7)(9)	-0.066(4)(5)	0.106(3)(5)	0.413(8)(9)	0.279(9)(12)	0.115(5)(7)	-0.236(5)(6)	0.212(4)(5)
QMHRG2020[HotQCD]	0.031(3)	-0.066(6)	0.103(5)	0.437(14)	0.272(14)	0.127(10)	-0.243(8)	0.244(3)
QMHRG2016+ [Houston]	0.031(3)	-0.071(7)	0.104(5)	0.444(15)	0.277(16)	0.132(10)	-0.256(7)	0.235(2)
PDGHRG	0.030(2)	-0.046(4)	0.094(4)	0.419(12)	0.234(11)	0.106(8)	-0.197(6)	0.283(2)
$EVHRG2020[b = 1 \text{ fm}^3]$	0.027(2)	-0.059(5)	0.103(5)	0.431(13)	0.264(13)	0.113(8)	-0.223(5)	0.243(2)
S-matrix [Friman et al,2015]	0.020(1)	-0.062(5)	0.107(4)	_	-	_	_	_

– largest deviations from HRG seen for χ^{BQ}_{11} : ~25%

 $\chi^B_2 = 2\chi^{BQ}_{11} - \chi^{BS}_{11}$

$$-\chi^{BS}_{11}/\chi^B_2=0.57(6)$$

- strangeness fluctuations and correlations are well described by QMHRG2020 at T_{pc}
- electric charge fluctuations and correlations deviate from QMHRG2020 already at about 145 MeV
- baryon number fluctuations are sensitive to BS-correlations

$$\chi^B_2(T_{pc}) = 2\chi^{BQ}_{11} \left(1 - rac{\chi^{BS}_{11}}{2\chi^{BQ}_{11}}
ight)_{T_{pc}} \simeq 2.6 \cdot (2\chi^{BQ}_{11})$$

Ratio of baryon number – strangeness correlation and net strangeness fluctuations

D. Bollweg et al. (HotQCD), arXiv:2107.10011

PDG-HRG: uses experimentally known hadron spectrum listed by the Particle Data Group QM-HRG: uses additional hadrons predicted to exist in Quark Model calculations

 description of BS-correlations in HRG models is particularly sensitive to "missing resonances" in the strangeness sector

Baryon number – strangeness chemical potentials at freeze-out from strange baryon yields BS ratios probe strangeness content in an HRG

STAR multi-strange baryon yields are consistent with freeze-out at T_{pc} and a μ_S/μ_B that reflects contributions from additional strange baryons

at
$$T_{pc}$$
 QCD: $\frac{\mu_S}{\mu_B} \simeq 0.24$
PDG-HRG: $\frac{\mu_S}{\mu_B} \simeq 0.21$

Experimental access to baryon number – strangeness correlation ?

testing assumption of Skellam distribution:

$$\begin{split} -\frac{\chi_{BS}}{T^2} &> \frac{1}{VT^3} [2\langle \Lambda + \Sigma^0 \rangle + 4\langle \Sigma^+ \rangle \\ &+ 8\langle \Xi \rangle + 6\langle \Omega^- \rangle] = 97.4 \pm 5.8. \\ \chi_{11}^{QS}/T^2 &= (178.5 \pm \pm 17.14) \\ \frac{\chi_S}{T^2} &\simeq \frac{1}{VT^3} [(\langle K^+ \rangle + \langle K^0 \rangle + \langle \Lambda + \Sigma^0 \rangle + \langle \Sigma^+ \rangle \\ &+ \langle \Sigma^- \rangle + 4\langle \Xi^- \rangle + 4\langle \Xi^0 \rangle + 9\langle \Omega^- \rangle + \text{antiparticles}) \\ &- (\Gamma_{\phi \to K^+} + \Gamma_{\phi \to K^-} + \Gamma_{\phi \to K^0} + \Gamma_{\phi \to \bar{K}^0}) \langle \phi \rangle] = (504 \pm 24). \end{split}$$

P. Braun-Munzinger, A. Kalweit, K. Redlich, J. Stachel, Phys. Lett. B747 (2015) 292, arXiv:1412.8614

for Skellam distributions mean values and second order cumulants as well as correlations are related:

$$rac{\chi_N}{T^2} = rac{1}{VT^3} (\langle N_q
angle + \langle N_{-q}
angle)$$

$$egin{aligned} &rac{\chi_N}{T^2} = rac{1}{VT^3} \sum_{n=1}^{|q|} n^2 (\langle N_n
angle + \langle N_{-n}
angle) \ &rac{\chi_{NM}}{T^2} = rac{1}{VT^3} \sum_{n=-q_N}^{q_N} \sum_{m=-q_M}^{q_M} nm \langle N_{n,m}
angle \ &|q| = 1 \; (B), \; 2 \; (Q), \; 3 \; (S) \end{aligned}$$

getting control over B rather than P fluctuations is important!!!

Experimental access to baryon number – strangeness correlation ?

A puzzle ?

 χ_2^B/χ_2^Q from STAR data using proton number distribution as proxy and implementing a "simple treatment for strange baryon contributions" to obtain χ_2^B

M. Kitazawa et al, arXiv:2205.10030

- result is about a factor 2 smaller than expected

- consistent with the expected, missing strange baryon contribution?

Ratios of 4th and 2nd order cumulants

- large deviations from Skellam -

- ratios of 4th and 2nd order cumulants differ from non-inter. HRG for T>145 MeV
- they change by ~(20-40)% in the crossover region

sensitive probes for freeze-out

at ALICE freeze-out temperature $T_{fo} = 156.5(1.5) \mathrm{MeV}$

Ratios of 4th and 2nd order cumulants – large deviations from Skellam –

– Why are cumulants of proton number fluctuations a good proxy for ratios of baryon number cumulants, although they may not be good proxies for the individual cumulants ?

constraint:

$$\chi_{n+1}^{B} = 2\chi_{n1}^{BQ} - \chi_{n1}^{BS} \qquad \Longrightarrow \quad \frac{\chi_{4}^{B}}{\chi_{2}^{B}} = \frac{1 - \frac{\chi_{31}}{2\chi_{31}^{BQ}}}{1 - \frac{\chi_{11}^{BS}}{2\chi_{11}^{BQ}}} \frac{\chi_{31}^{BQ}}{\chi_{11}^{BQ}} \equiv R(T)\frac{\chi_{31}^{BQ}}{\chi_{11}^{BQ}}$$

 v^{BS}

Ratios of 4th and 2nd order cumulants

$$rac{\chi_4^B}{\chi_2^B} = rac{1 - rac{\chi_{31}^{BS}}{2\chi_{31}^{BQ}}}{1 - rac{\chi_{11}^{BS}}{2\chi_{11}^{BQ}}} rac{\chi_{31}^{BQ}}{\chi_{11}^{BQ}} \equiv R(T) rac{\chi_{31}^{BQ}}{\chi_{11}^{BQ}}$$
 $R(T_{pc}) \simeq 1.15 \; rac{\chi_{31}^{BQ}}{\chi_{11}^{BQ}}$

reminder:

$$\chi^B_2(T_{pc}) = 2\chi^{BQ}_{11} \left(1 - rac{\chi^{BS}_{11}}{2\chi^{BQ}_{11}}
ight)_{T_{pc}} \simeq 2.6(2\chi^{BQ}_{11})$$

unlike χ_2^B , χ_4^B themselves, their ratio is much less sensitive to BS-correlations

Ratio of 4th and 2nd order cumulants

F. Karsch, EMMI-RRTF, November 2023

Higher order cumulant ratios on the pseudo-critical line

A. Bazavov et al. (HotQCD), PRD 101, 074502 (2020), arXiv:2001.08530

F. Karsch, EMMI-RRTF, November 2023

Charm fluctuations and correlations

- calculating cumulants involving charm is difficult because

a) the large charm quark mass cumulants are strongly, exponentially suppressed

 $\chi^{X,C}_{1,1} \sim \mathrm{e}^{-M/T} \sim O(\mathrm{e}^{-10})$

- b) as a consequence the quark mass needs to be well tuned to get accurate charm hadron masses: 5% error on charmed hadron mass changes cumulants by a factor 2
 - lattice cut-off effects need to be controlled well to allow for a unique definition of a "line of constant physics"

 c) charmed hadron spectrum less well known (in particular in the baryon sector): influence of missing states in the charm sector is much larger than in the light and strange quark sector

Charmed cumulants: towards a controlled continuum limit extrapolation

- tuning the charm quark mass on the lattice using different criteria introduces cut-off effects
- approaching the continuum limit on different trajectories

the choice of a trajectory is irrelevant in the continuum limit, results will be unique

all currently published data on charm cumulants are based on data from $N_{\tau}=8$ lattices

A. Bazavov et al, arXiv:1404.4043

Sipaz Sharma, arXiv:2212.11148

first continuum extrapolations using $N_{ au}=8,12,16$ data: Sipaz Sharma @ Lattice2023

F. Karsch, EMMI-RRTF, November 2023 ⁴

Charmed cumulants: the influence of missing charmed resonances

 largest in baryon sector: using Quark Model calculations amounts to a change of almost a factor 2 compared to PDG-HRG

(compared to about 15% in the strange hadron sector)

Sipaz Sharma, HotQCD preliminary

The charmed Koch-ratio

note: contributions from doubly-charmed hadrons (in HRG/Boltzmann approximation) are suppressed by a factor $\mathcal{O}(10^{-4})$

$$\implies \frac{\chi_{13}^{BC}}{\chi_4^C} = \frac{\chi_{11}^{BC}}{\chi_2^C} + \mathcal{O}(10^{-4})$$

Sensitivity to different sectors of the charmed hadron spectrum

 influence of missing states is more prominent for states with |Q|=2

– charm quark degrees of freedom start showing up at T_{pc}

