

KO waveforms and microspill structure

- The choice of excitation signal in KO extraction has a huge implication for the spill microstructure. Every facility has investigated this topic and came out with some optimal excitation signal. At GSI SIS-18, single RBPSK is used.
- PhD project (P. Niedermayer) started two years ago, one of the goal is finding the optimal waveform for microspill quality.
- With large scale particle simulations along with experiments at HIT and COSY, an answer was found → fixed frequency sinusoids are the best waveforms for microspill. Need to be mixed with noise waveform for a good extraction efficiency (Noise ++ excitation).
- Developments in the past year:
 - Slow extraction is a sensitive non linear dynamics process, thus finding the optimal frequencies for sinusoids is dependent on precise extraction settings. Optimization routine built into excitation waveform generator
 - The waveforms suitable for microspill often create undesired macrospill structure. Macrospill feedback
 - 3. Noise ++ KO signal amplitude levels required is significantly higher compared to RBPSK. **Higher excitation power needed**

Microspill Optimization Rahul Singh 19.12.2023

Slow macrospill feedback using generic transceiver+CPU

- Pulse counter implemented in the FPGA.
 Feedback logic and excitation signal generation implemented in the CPU. Loop latency minimized to ~ 1 ms
- Amplitude of excitation signal is controlled by a feedback loop for a flat macrospill (10 Hz).

Detectors tested with so far:

- LGAD (HADES) Detector (at COSY)
- Ionisation Chamber (IC)
- SEM Grid
- Plastic Scintillator
- BLM at E-Septum

Microspill Optimization Rahul Singh 19.12.2023

Fast macrospill feedback with RFNoC (FPGA)

- FPGA-based feedback for low loop latency
- Project with support from COSY/HESR
 - Intense exchange with experts (GRCon23)
 - Optimized parameters (buffers, package sizes, ...) ~ 30 μs latency achieved
 - → Pre-recorded signal played back from FPGA (replay block)

CPU based Feedback

FPGA Feedback with high latency control parameters

FPGA feedback with low latency control parameters

Microspill Optimization Rahul Singh 19.12.2023

Summary

- A spill optimization system is developed → improvement of spill quality by generating optimal excitation waveforms. An integrated optimizer routine assists with this procedure.
- Two feedbacks (CPU and FPGA based) are implemented to tackle macrospill shape. They control the excitation signal amplitude based on a variety of particle intensity detectors. Many detectors have been tested.
- The power required for new waveform (Noise ++) is higher than RBPSK signal. Requires knock out (KO) power amplifier upgrade for usage with highest rigidity beam.
- System is available for usage

THANK YOU to many GSI, COSY and HIT colleagues!

Microspill Optimization Rahul Singh 19.12.2023 5