Exclusive Reactions with Proton Beam from SIS100

Overarching Physics Objectives

... from hadron to heavy-ion physics

- Properties of strongly interacting matter?
- Formation of hadronic matter?
- Underlying symmetries
- Degrees of freedom: from quarks/gluons to baryons/mesons?
- Origin of mass?

Physics with 30 GeV/c Proton Beams at FAIR

There are two main foci for proton beam from SIS100

(N.B. not really separate topics)

- pp (pn) and pA as input for AA reaction studies
- Hadron physics studies outright
 - (Multi-)strange baryon production and properties
 - Open/hidden charm hadrons

• <u>Hyperon (Y) Spectroscopy</u> in |S|=1,2,3 systems, *e.g.* Ξ^* , Ω^* , spin-parity determination Quark models: U. Löring *et al.*, EPJA 10 (2001) 447

|S| = 2

Q.N. known for only 2 excited Ξ states
PDG: "nothing of significance on Ξ had been added since 1988"
Many states predicted below 3 GeV. Dynamical origin baryon-meson interactions? (see *e.g.* baryogenesis of Lutz/Kolomeitsev)
Production mechanism (string fragmentation, decays of heavy resonances)?
Compare 1/2⁺ and 1/2⁻ excitation (chiral partners?)
AA aspects: feed-down from higher states important for SHM and

 $\sqrt{S_{NN}} - \sqrt{S_{thr}}$

10

[GeV]

10

√s_{NN}

1

[GeV]

10

Jim Ritman

• <u>Hyperon (Y) Spectroscopy</u> in |S|=1,2,3 systems, *e.g.* Ξ^* , Ω^* , spin-parity determination

|S| = 2

Q.N. known for only 2 excited Ξ states
PDG: "nothing of significance on Ξ had been added since 1988"
Many states predicted below 3 GeV. Dynamical origin baryon-meson interactions? (see *e.g.* baryogenesis of Lutz/Kolomeitsev)
Production mechanism (string fragmentation, decays of heavy resonances)?
Compare 1/2⁺ and 1/2⁻ excitation (chiral partners?)
AA aspects: feed-down from higher states important for SHM and hyperon-nucleon interaction (femtoscopy)

|S| = 3

Q.N. only for ground state, only 2 other states seen Compare 3/2⁺ and 3/2⁻ excitation (chiral partners) No u,d valence quarks, easier to interpret? Energy scan is needed.

PWA as working horse for hyperon spectroscopy under development Ahmed Foda PWA dev.

CML Retreat

300

6

- Hyperon (Y) Spectroscopy in |S|=1,2,3 systems, e.g. Ξ^* , Ω^* , spin-parity determination
- N* Spectroscopy and coupling to strangeness, e.g. $pp \rightarrow p N^* \rightarrow p (\Xi KK)$
- Low-Energy Constants in chiral SU(3) via axial-vector transition form factors, e.g. $\Xi^* \rightarrow \Xi \pi \gamma$
- <u>YN, YY Interactions</u> in exclusive pp reactions and via femtoscopy

Interest related to FOS and neutron star Lots of progress in femtoscopy at LHC Advantage of pp@CBM: less feed-down from higher Y*

Access via FSI in exclusive reactions

k* (MeV/c)

Oct. 2023

0.8

 $p p \rightarrow p K \Lambda$

- Hyperon (Y) Spectroscopy in |S|=1,2,3 systems, e.g. Ξ^* , Ω^* , spin-parity determination
- N* Spectroscopy and coupling to strangeness, e.g. $pp \rightarrow p N^* \rightarrow p (\Xi KK)$
- Low-Energy Constants in chiral SU(3) via axial-vector transition form factors, e.g. $\Xi^* \rightarrow \Xi \pi \gamma$
- <u>YN, YY Interactions</u> in exclusive pp reactions and via femtoscopy 34

Interest related to FOS and neutron star Lots of progress in femtoscopy at LHC Advantage of pp@CBM: less feed-down from higher Y*

Access via FSI in exclusive reactions

32

3.1

3

- Hyperon (Y) Spectroscopy in |S|=1,2,3 systems, e.g. Ξ^* , Ω^* , spin-parity determination
- N* Spectroscopy and coupling to strangeness, e.g. $pp \rightarrow p N^* \rightarrow p (\Xi KK)$
- Low-Energy Constants in chiral SU(3) via axial-vector transition form factors, e.g. $\Xi^* \rightarrow \Xi \pi \gamma$
- YN, YY Interactions in exclusive pp reactions and via femtoscopy
- <u>Hyperon Structure</u>, e.g. $Y^* \rightarrow Y \ell^+ \ell^-$, precision eTFF studies

Information on hadron structure (*e.g.* size of hyperon) Dalitz decays of *e.g.* $\Lambda(1405)$, $\Sigma(1385)$, $\Lambda(1520)$,..(narrow states) Radiative BR about 10⁻⁵

Large rates needed (\rightarrow CBM and SIS100) (First attempt, HADES in pp@4.5 GeV)

1.27 GeV/c² ^{2/3} **C** ^{1/2} charm

9

- Charm-N Interactions : SU(4) dynamics!
- Intrinsic Charm component of the nucleon

Long standing debate: "does the proton wave function contain an intrinsic charm (IC) component?" Brodsky *et al.:* IC manifest as valence-like charm content in PDFs

LHCb hints towards observation of IC via Z+charm jets [PRL128, 082001, 2022]

Evidence claimed by NNPDF collaboration based on global analysis + ML methods

[Nature608, 483, 2022]

Can IC in proton increase charm production close to threshold?

Jim Ritman

- Intrinsic Charm component of the nucleon
- Mass Structure of the proton

Duran et al., Nature 615, 813 (2023), "Determining the gluon gravitational form factor of the proton"

-0-

//Ψ-007 (dipole)

12.0

- Charm-N interactions : SU(4) dynamics!
- Intrinsic Charm component of the nucleon
- Mass Structure of the proton
- <u>Exotic</u> baryonic-like states with hidden charm

1.27 GeV/c²

- Reveal their nature!
- Hadronic production $pp \rightarrow pP_c (\rightarrow J/\psi p)$
- Line-shape study near $\Sigma_c \overline{D}^{(*)}$ thresholds
- Hunt for new states

↓

SIS100 scan up to 6.6 GeV Gluon rich production Measure pJ/ Ψ and ΣD

Jim Ritman

CML Retreat

Day-1 Physics with Proton Beam at SIS100

Jim Ritman

Day-1 Physics with Proton Beam at SIS100

Internal degrees-of-freedom of hyperons

- Probing the hyperon excitation spectrum
- Missing mass scan using strangeness tagging
- Example:
- Identification of charged tracks from primary vertex with PID capabilities
- Without secondary vertex analysis, dilepton identification, photon detection, ...

Experimental conditions

- 10 GeV protons (max Mx=2.6 GeV)
- ~ 10⁸ protons/spill (duty cycle 50%)
- LH₂ target (5 cm)
- CBM Dipole magnet+TRD+TOF+FSD

J^P	(D, L_N^P)	S		Octet	members		Singlets
$1/2^{+}$	$(56,0^+_0)$	1/2	N(939)	$\Lambda(1116)$	$\Sigma(1193)$	$\Xi(1318)$	
$1/2^{+}$	$(56,0^+_2)$	1/2	N(1440)	$\Lambda(1600)$	$\Sigma(1660)$	$\Xi(1690)^{\dagger}$	
$1/2^{-}$	$(70,1^{-}_{1})$	1/2	N(1535)	$\Lambda(1670)$	$\Sigma(1620)$	$\Xi(?)$	$\Lambda(1405)$
					$\Sigma(1560)^{\dagger}$		
$3/2^{-}$	$(70,1_1^-)$	1/2	N(1520)	$\Lambda(1690)$	$\Sigma(1670)$	$\Xi(1820)$	$\Lambda(1520)$
$1/2^{-}$	$(70,1^{-}_{1})$	3/2	N(1650)	$\Lambda(1800)$	$\Sigma(1750)$	$\Xi(?)$	
					$\Sigma(1620)^{\dagger}$		
$3/2^{-}$	$(70,1_1^-)$	3/2	N(1700)	$\Lambda(?)$	$\Sigma(1940)^{\dagger}$	$\Xi(?)$	
$5/2^{-}$	$(70,1^{-}_{1})$	3/2	N(1675)	$\Lambda(1830)$	$\Sigma(1775)$	$\Xi(1950)^{\dagger}$	
$1/2^{+}$	$(70,0^{+}_{2})$	1/2	N(1710)	$\Lambda(1810)$	$\Sigma(1880)$	$\Xi(?)$	$\Lambda(1810)^{\dagger}$
$3/2^{+}$	$(56,2^{\mp}_{2})$	1/2	N(1720)	$\Lambda(1890)$	$\Sigma(?)$	$\Xi(?)$	
$5/2^{+}$	$(56,2^{\mp}_{2})$	1/2	N(1680)	$\Lambda(1820)$	$\Sigma(1915)$	$\Xi(2030)$	
$7/2^{-}$	$(70,3^{-}_{3})$	1/2	N(2190)	$\Lambda(?)$	$\Sigma(?)$	$\Xi(?)$	$\Lambda(2100)$
$9/2^{-}$	$(70,3^{-}_{3})$	3/2	N(2250)	$\Lambda(?)$	$\Sigma(?)$	$\Xi(?)$	
$9/2^{+}$	$(56,4_4^+)$	1/2	N(2220)	A(2350)	$\Sigma(?)$	$\Xi(?)$	

Estimates @Mx=1.32 GeV

- Objective ~ 4k counts/day
- Resolution ~ 30 MeV
- Eff. *x* accept. 75% x 60% = ~ 45%
 - -> Cross section sensitivity ~ 100 nb

Thank You !

- 104 MeV/c² -¹/₃ **S** 1/₂ strange
- Hyperon (Y) Spectroscopy in |S|=1,2,3 systems, e.g. Ξ^* , Ω^* , spin-parity determination
- N* Spectroscopy and coupling to strangeness, e.g. $pp \rightarrow p N^* \rightarrow p (\Xi KK)$
- Low-Energy Constants in chiral SU(3) via axial-vector transition form factors, e.g. $\Xi^* \rightarrow \Xi \pi \gamma$
- <u>YN, YY Interactions</u> in exclusive pp reactions and via femtoscopy

Interest related to EOS and neutron star Lots of progress in femtoscopy at LHC Advantage of pp@CBM: less feed-down from higher Y*

PRL114, 092301 (2015)

Fast Simulation

STS ~ $\frac{\Delta p}{p}$ = 2% and $\Delta \theta$ = $\Delta \phi$ = 2 mrad
Acceptance ~ $\theta \in [2.5^\circ, 25^\circ], \phi \in [0, 2\pi]$ Efficiency ~ 98 (< 2 GeV)...96 %(> 2 GeV)
MVD ~ Δz = 4 µm, Δx = Δy = 8× Δz PID (TRD,TOF,PSD) ~ 99.x % (e, µ, π, K, p)

 $10^{-3}\mu$ b x 0.06 (branching ratio)

 $10^{3}\mu b \ge 10^{-6}$ (misID $\pi^{+} \& \pi^{-}$)

Fast Simulation

- Signal: $pp \rightarrow ppJ/\psi(\rightarrow ee)$
- Background: $pp \rightarrow pp\pi^+\pi^- (pp\pi^+\pi^-\pi^0)$
- 10¹⁰ protons per spill (= 10 seconds)

SignalCross Section [µb]BackgroundCross Section [µb] $pp \rightarrow ppJ/\psi(\rightarrow ee)$ 10^{-3} (×0.06 BR) $pp \rightarrow pp\pi^{+}\pi^{-}$ 1000 $(\pi^{+}\pi^{-}\text{mis-ID as } e^{+}e^{-})$ (×10^{-6}, suppression factor)

Fast Simulation

- Signal: $pp \rightarrow ppJ/\psi(\rightarrow ee)$ -
- Background: $pp \rightarrow pp\pi^+\pi^-$ ($pp\pi^+\pi^-\pi^0$) -
- 10¹⁰ protons per spill (= 10 seconds)

$10^{-3}\mu$ b x 0.06 (branching ratio
$10^3 \mu b$ x 10^{-6} (misID π^+ & π^-)
\rightarrow 1100 reco events per day

Ö	mer	Pen	nek

0.6

0.5

0.4

0.3

0.2

0.1

20

		Background	Cross Section [ub]	
Signal	Cross Section [ub]	Background		
Signai	Cross Section [µb]	$nn \rightarrow nn\pi^+\pi^-$	1000 (×10 ⁻⁶ , suppression factor)	
$pp \rightarrow ppJ/\psi(\rightarrow ee)$	10 ⁻³ (×0.06 BR)	$(\pi^+\pi^-\text{mis-ID as }e^+e^-)$		

Physics Interest: Exclusive Channels with Proton Beams

→ We need to measure high energy electrons
 → TRD
 → We need to measure particles with low momentum transfer
 → FSD
 → Basic /fast simulations ongoing, CBMROOT-simu started

Detector Configuration Assumed

- LH2 Target at entrance of Dipole (Uni Münster contacted)
- Dipole
- STS (MVD...)
- RICH
- TRD
- TOF
- FSD
- Beamline...
- Additional trackers ?

Contributions of FFN to CBM

Gas system for the TRD Detector

- ongoing communication with Uni-MS, Uni-F

Light Readout and Calorimeter for the FSD - ongoing communication with Prague groups

Simulation/Analysis Software Framework

Dieter Grzonka +Dachi Okropiridze

Tobias Stockmanns + many

CML Retreat