Hadron Structure and Spectroscopy from Lattice QCD

Hartmut Wittig
CML Retreat 2023
4-5 October 2023

Lattice QCD as a first-principles approach

Lattice calculations increasingly competitive:

Precise enough to challenge conventional wisdom / phenomenology / experiment

[Djukanovic et al., 2303.08741]

Proton radii

Muon $g-2$

[HW @ Moriond, 2306.04165]
[Djukanovic et al., 2309.6590, 2309.07491]

Hadron spectroscopy and few-body dynamics

49 new conventional and 23 new exotic hadrons discovered at LHC, Belle,.... since 2012
Finite-volume quantisation ("Lüscher method"): rigorous formalism amenable to Lattice QCD

$$
\operatorname{det}\left(\tilde{\mathcal{K}}^{-1}\left(E_{\mathrm{L}}\right)-B\left(E_{\mathrm{L}}, L\right)\right)=0
$$

$\tilde{\mathcal{K}}\left(E_{\mathrm{L}}\right): 2 \rightarrow 2$ scattering amplitude
$B\left(E_{\mathrm{L}}, L\right)$: analytically known function
E_{L} : multi-particle energy levels in finite volume
Topics / Examples:

- H dibaryon - hyperon-hyperon interactions
- NN scattering and nucleon resonances
- Resonances in charm sector; tetraquarks: $T_{c c}^{+}$
- Interpretation of the $\Lambda(1405)$

[Green et al., PRL 127 (2021) 242003, and in prep.]

Hadron spectroscopy and few-body dynamics

Current challenges:

- Role of the continuum limit - extrapolation to the physical point
- Perform coupled-channel analyses, incorporate higher partial waves
- Two-particle finite-volume quantisation fails above 3- and 4-particle thresholds and below left-hand cut \rightarrow employ and implement 3-particle quantisation conditions

[Padmanath \& Prelovšek, PRL 129 (2022) 032002]

[Du et al., PRL 131 (2023) 131903]

Hadron spectroscopy and few-body dynamics

Future plans:

- Comprehensive programme on baryon-baryon, meson-baryon, meson-meson scattering:
- H dibaryon, nucleon-nucleon channels - approach to the physical point: $m_{\pi}=m_{\pi}^{\text {phys }}, \quad a \rightarrow 0$
- Charmed tetraquarks
- Investigation of left-hand cut - precursor to studying 3-particle quantisation condition

Collaborators:

- DESY-Zeuthen (Jeremy Green); GSI, TU Darmstadt (Daniel Mohler)
- BaSc Collaboration ["Baryon Scatterers"] (John Bulava, Colin Morningstar, André Walker-Loud)

Hadron structure observables

Examples for first-principles determinations of nucleon hadronic matrix elements:

- Axial form factor of the nucleon - input for future neutrino experiments: DUNE, T2HK
- Electric, magnetic and Zemach radii of the proton - final resolution of proton radius puzzle
- PDFs and GPDs - input for EIC

[Djukanovic et al., PRD 106 (2022) 074503]

Hadron structure observables

Current challenges:

- Noise problem: exponential growth of signal-to-noise ratio in baryonic correlators
- Related problem: unsuppressed contributions from excited states: $N \pi, N \pi \pi$
- GPDs, PDFs: complicated renormalisation of bilocal operators; inverse problem
- Incorporation of isospin-breaking corrections

Hadron structure observables

Future plans:

- Comprehensive programme to study electromagnetic, axial and strangeness form factors
- Determine nucleon charges $\left(g_{A}, g_{S}, g_{T}\right), \sigma$-terms, and moments of structure functions
- Novel noise-reduction technology: multi-particle interpolating operators, machine-learning techniques

Nucleon 3-point function with explicit $N \pi$ interpolators:

Cost-efficient observables via trained networks:

Ancillary calculations

Precision scale setting

- Lattice scale from lowest-lying octet and decuplet baryon masses including isospin-breaking effects

Pion-pion scattering and pion form factor

- Constrain long-distance behaviour of correlator for precision observables (e.g. $(g-2)_{\mu}, \Delta \alpha_{\text {had }}$)

Pion mass-dependence of octet baryons

- Alternative determination of σ-terms via Feynman-Hellmann theorem

QCD Thermodynamics: Photon emissivity of QGP

Differential photon emission rate per unit volume in hot QCD matter:

$$
\frac{d \Gamma^{\gamma}}{d \omega}=\frac{\alpha_{\mathrm{e} . \mathrm{m} .}}{\pi} \frac{2 \omega \sigma(\omega)}{e^{\omega / T}-1}+\mathrm{O}\left(\alpha_{\mathrm{e} . \mathrm{m} .}^{2}\right)
$$

$\sigma(\omega)$: in-medium spectral function;
ω : photon energy

Perform first-principles determination of properties of the thermal medium
Can determine $\sigma(\omega)$ via dispersion relation without numerically ill-posed inverse problem [Cè, Harris, Krasniqi, Meyer, Török, 2309.09884]

Summary \& PoF V Outlook

Rich research programme in hadron structure \& spectroscopy, and QCD thermodynamics
State-of-the-art calculations
Innovative methodology to turn Lattice QCD into a precision tool

Crucial requirement: High-performance computing

Dedicated resources of ≈ 500 Mcore-hours p.a. required
Major new investment at HIM: HIMSTER-3 - 1.88 M€
Shared with experimentalists in EMP, SPECF
Procurement planned in Q4/2024 - Q1/2025
Will need replacement during latter half of PoF V

Thank you!

Hadron spectroscopy and few-body dynamics

Issues:

Role of the continuum limit

HELMHOLTZ
Helmholtz Institute Mainz

Hadron spectroscopy: Nucleon-nucleon interactions

Disagreement over existence of NN -bound states at heavier-than-physical pion mass
Perform scaling study for $N N$-states at $m_{\pi}=m_{K} \simeq 420 \mathrm{MeV}-\overline{10}$ (deuteron) and 27plet (dineutron) Antidecuplet, $S=1, I=0$ (deuteron):

- 300 different energy levels resolved - sensitivity to higher partial waves

Hadron spectroscopy: Nucleon-nucleon interactions

Antidecuplet, $I=0,{ }^{3} S_{1}$ phase shift analysis
(mixing with ${ }^{3} D_{1}$ neglected)

- $N N$-interaction weakens as $a \rightarrow 0$
- Virtual bound state observed
- No bound deuteron at $m_{\pi}=m_{K} \simeq 420 \mathrm{MeV}$

Include higher partial waves in the fits

