Coupled-channel systems from and with QCD

:: CML Retreat ::

Matthias F.M. Lutz

Hadron Physics and QCD @ GSI

- ✓ Two complementary approaches in QCD
- ✓ Chiral SU(3) dynamics for mesons and baryons
- ✓ Coupled-channel dynamics with realistic forces
- ✓ Challenges and future plans

Two complentary approaches

- ✓ Lattice QCD simulations (LQCD) Daniel Mohler (TU Darmstadt)
 - coupled-channel dynamics from Lüscher ansatz
 - on-going projects with charmed mesons, light baryons, tetra-quarks etc
- ✓ Effective field theory (EFT) approach to QCD MFML (GSI)
 - quark-mass dependence of hadron masses
 - coupled-channel dynamics from the chiral Lagrangian with realistic forces
- □ LEC from Lattice QCD for EFT computations
 - controlled extrapolation of Lattice QCD to physical point

Chiral SU(3) dynamics from QCD

✓ The chiral Lagrangian with three light flavors

- the leading order term predicts a rich spectrum of $J^P = \frac{1}{2}^-$ and $\frac{3}{2}^-$ resonances
- on-going projects: how to make this quantitative with chiral corection terms

✓ Test bed for understanding chiral QCD

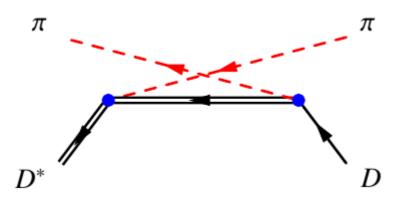
- quark-mass dependence of resonance masses and scattering amplitudes
- first results from LQCD on $\Lambda(1405)$ as a two pole system at unphysical quark-masses

□ LEC from Lattice QCD for EFT computations

- on-going projects towards infinite volume, continuum limit, physical quark-masses
- first global fit to the baryon octet and decuplet masses on CLS ensembles

Coupled-channel scattering with long range forces

$$T_{ab}^{J}(s) = U_{ab}^{J}(s) + \sum_{c,d} \int_{\mu_{thr}^{2}}^{\infty} \frac{d\bar{s}}{\pi} \frac{s - \mu_{M}^{2}}{\bar{s} - \mu_{M}^{2}} \frac{T_{ac}^{J}(\bar{s}) \rho_{cd}^{J}(\bar{s}) T_{db}^{J*}(\bar{s})}{\bar{s} - s - i\epsilon}$$


- ✓ Derive $T_{ab}^{J}(s)$ from the Chiral Lagrangian (GPA)
- $ightharpoonup T_{ab}^{J}(s)$ is computed in terms of non-linear integral equations
 - use perturbation theory for $U_{ab}^{J}(s)$ followed by a conformal expansion

$$U(s) = U_{\text{close-by}}(s) + U_{\text{far-distant}}(s)$$
with
$$U_{\text{far-distant}}(s) = \sum_{k} c_k \, \xi^k(s)$$

□ Left-hand cuts are important in physical systems

Anomalous thresholds and coupled-channel unitarity

- ✓ A novel mechanism for p-wave resonances in QCD
 - simple example of a p-wave πD^* channel already worked out
- ✓ Anomalous threshold occurs close to physical masses
 - assume first $M_{D^*} < M_D + m_{\pi}$ (can be tuned on Lattice QCD ensembles)
 - for $m_{\pi} = 150 \text{ MeV}$ we find a normal system
 - for $m_{\pi} = 145 \text{ MeV}$ we find an anomalous reaction $\pi D \to \pi D^*$
- ✓ An anomalous threshold effect generates p-wave resonances

Challenges and future plans

- ✓ LEC from Lattice QCD for EFT computations
 - bright future for LQCD-EFT approach to reaction amplitudes at the physical point

- \square HPC at GSI
 - support of local high-performance parallel computing indispensible
 - support of use cases relevant for the theory research at GSI
- □ Current GSI IT stratgey poses significant challenges
 - do we have to plan for external computing resources?
 - do we need IT support from external sources?

Future plans: 2028 and beyond

✓ Next generation lattice QCD computations

- further improved action for better control of discretization effects
- improved coverage of the quark-mass plane including multiple lattice spacings with approximately physical quark-masses
- large and consistent data sets for chiral SU(3) fits

\checkmark Coupled-channel framework for flavor SU(3) baryons at work

- application to specific systems accessible in experiments
- predict systems that are critical in the understanding of particle production in HIC

□ LEC from Lattice QCD for EFT computations

- bright future for LQCD-EFT approach to reaction amplitudes at the physical point
- sharpen the physics programme at CBM and PANDA