CBM Interactive Alignment Display

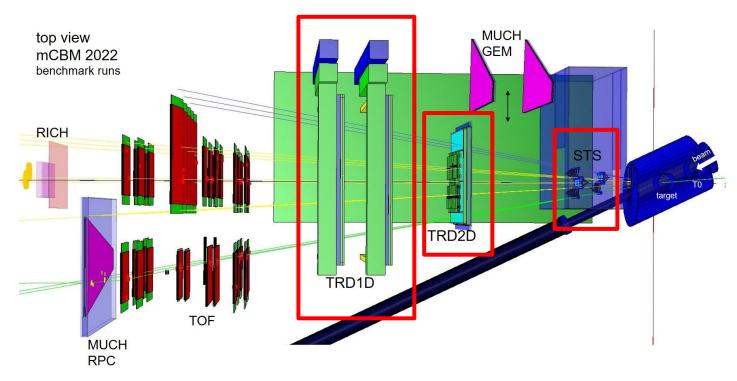
TRD Retreat 2023

Axel Puntke

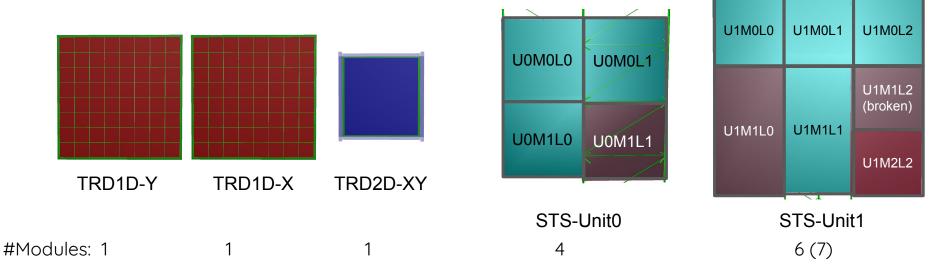
Purpose of the Tool in one Sentence

User should be able to align a setup of detector modules quickly by looking at correlations and residuals of straight tracks and hits within the setup using previously collected beamtime data

(like aligning an optical system)


Technical Information

- Developed in C++
- QT 6 for the basic GUI
- Qwt Qt Widgets for Technical Applications for histograms
- GPU code written in OpenCL


Tool Test Environment: mCBM 2022

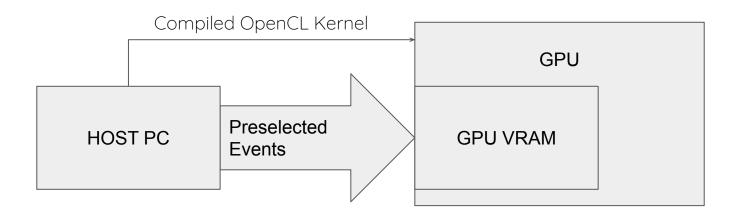
Goal: Spatially align TRD1D, TRD2D and STS

Degrees of Freedom

- 6 degrees of freedom per module: x, y, z, rot-x, rot-y, rot-z
- Modules in the 5 involved layers:

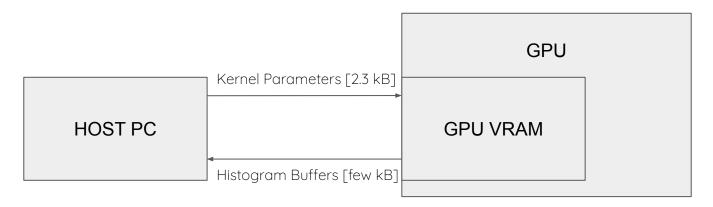
→ Total degrees of freedom: 78

Data Preparation


- Suitable Events are selected on Virgo Cluster
 - Exactly one hit per STS station to build unambiguous tracks
 - 9600 TimeSlices a 128 ms (20.5 min), from NiNi Run 2391 (May 26 2022)
 - Event count: 1,948,235 (761.5 MB)
- Saved in custom data format (GPU ready):
 - STS base hit 1&2 position + originating module ID
 - 20x TRD reference hit position + originating module ID

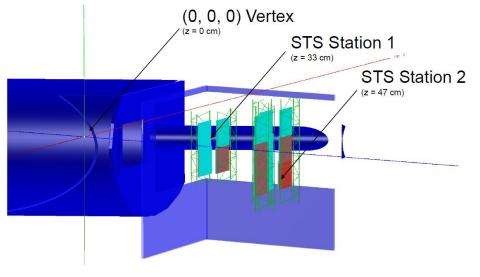
```
struct AlignEvent
{
    int32_t baseHit1Pos[3];
    uint32_t baseHit1AlignModuleId;
    int32_t baseHit2Pos[3];
    uint32_t baseHit2AlignModuleId;
    int32_t refHitPos[20 * 3];
    uint32_t refHitAlignModuleId[20];
} __attribute__((packed));
```

FairTask available for selection

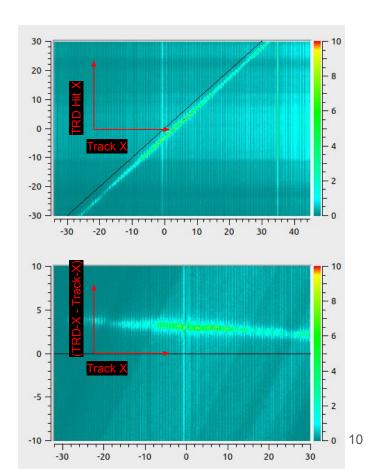

Tool Workflow

- Happens only once at program startup time:
 - Compilation of OpenCL kernel and upload to GPU
 - Upload of preselected events into GPU VRAM

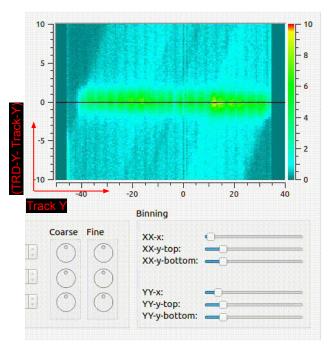
Tool Workflow


- Happens whenever a value is changed by the user in the UI ("every new frame"):
 - Upload of kernel parameters (alignment matrices, histogram borders/binnings etc.)
 - Re-Initialization of histogram buffers
 - Computation of correlation histograms on the GPU
 - Download of computed histograms from GPU

Track Building on GPU


- Track is built using the two STS base hits, connected by straight line (no fit)
- Computation of these tracks happens on GPU

 Alignment matrix (module translation & rotation) is applied to the hit positions in advance


Correlation Plots

- Intersection point I of track with plane z = d
 is computed
 - In this case: d = distance of TRD padplane to origin
- Top plot shows the track I.x position vs. TRD x position
 - Should ideally be on the angle bisector (plotted as black helping line)
- Bottom plot shows track l.x position vs.
 residual (x_{TRD} x_{Track})
 - Should ideally be always zero (plotted as black helping line)

Histogram Binning adjustable in Real-Time

- Because histograms are re-computed within few ms, also their binning is adjustable on the fly in real-time
 - Good demonstration of GPU computing capabilities

Y-Residuals of last TRD module, ~2M events, GIF plays in real-time, x-binning gets adjusted

Config File

Base Hit Module Definition

___ (STS) "base_hit_1_modules": { "group name": "STS Unit 0". "hist xy" : {"xmin" : -7, "xmax" : 7, "ymin" : -7, "ymax" : 7, "nbinsx" : 200, "nbinsy" : 200}, "id": 0. "name": "STS U0M0L0". "geo node path" : "/cave 1/sts v22f mcbm 0/Station01 1/Ladder09 1/HalfLadder09d 2/HalfLadder09d Module03 1", "rot_axis_y": [-0.00000, 0.00000, 32.435000],
"rot_axis_y": [-1.00000, 0.00000, 0.00000],
"rot_axis_y": [-0.00000, -1.00000, 0.00000],
"rot_axis_y": [-0.00000, -0.00000, 0.00000] 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 "name": "STS U0M0L1". "geo node path": "/cave 1/sts v22f mcbm 0/Station01 1/Ladder09 2/HalfLadder09d 2/HalfLadder09d Module03 1", "center": [2.979600, 0.000000, 34.065000], "rot_axis_x": [1.000000, 0.000000, 0.000000] "rot axis y": [0.000000, -1.000000, 0.000000 "rot axis z" : [0.000000, 0.000000, -1.000000 "id": 10. "name": "STS U0M1L0". "geo node path" : "/cave 1/sts v22f mcbm 0/Station01 1/Ladder09 1/HalfLadder09d 2/HalfLadder09d Module03 2", 31 32 33 34 35 36 37 "center": [-2.979600, -2.870000, 32.635000], "rot axis x": [-1.000000, 0.000000, 0.000000] "rot_axis_y": [-0.000000, -1.000000, 0.000000],
"rot_axis_z": [0.000000, 0.000000, 1.000000] 39 "geo node path": "/cave 1/sts v22f mcbm 0/Station01 1/Ladder09 2/HalfLadder09d 2/HalfLadder09d Module03 2", "center": [2.979600, -2.870000, 33.865000],
"rot_axis_x": [1.000000, 0.000000, 0.00000],
"rot_axis_y": [0.000000, -1.000000, 0.00000],
"rot_axis_z": [0.000000, 0.000000, -1.000000] 40 41 42 43 44 45 46 47 48 49 50 "base hit 2 modules": { "hist xy" : {"xmin" : -10, "xmax" : 10, "ymin" : -10, "ymax" : 10, "nbinsx" : 200, "nbinsy" : 200} "module_list": [53 "name": "STS U1M0L0", 55 "geo node path": "/cave 1/sts v22f mcbm 0/Station02 2/Ladder10 1/HalfLadder10d 2/HalfLadder10d Module03 1". "center" : [-5.959200, 0.000000, 47.765000],
"rot axis x" : [1.000000, 0.000000, 0.000000]

Correlation Module Definition (TRD)

```
"correlation modules": {
118
119
                "group name": "Correlation Modules".
120
                 "module list": [
                      "id": 501.
                      "name" : "TRD Module 5 (2D)".
124
                      "hist_corr_xx" : {"xmin" : -20, "xmax" : 20, "ymin" : -22, "ymax" : 22, "nbinsx" : 200, "nbinsy" : 200}
                     "hist_corr_yy": {"xmin": -25, "xmax": 25, "ymin": -23, "ymax": 23, "nbinsx": 200, "nbinsy": 200}
126
                      "hist res x" : {"xmin" : -20, "xmax" : 20, "ymin" : -10, "ymax" : 10, "nbinsx" : 200, "nbinsy" : 200},
                      "hist_res_y": {"xmin": -25, "xmax": 25, "ymin": -10, "ymax": 10, "nbinsx": 200, "nbinsy": 200},
128
                      "geo_node_path": "/cave_1/trd_v22h_mcbm_0/laver01_20101/module9_101001001".
                      "center": [-3.000000, 0.000000, 128.700000],
130
                      "rot axis x": [1.000000, 0.000000, 0.000000]
                      "rot_axis_y" : [0.000000, 1.000000, 0.000000]
"rot_axis_z" : [0.000000, 0.000000, 1.000000]
                      "corr plane z offset": -11.93
134
135
136
                      "id": 502,
                      "name": "TRD Module 21 (1D-X)".
                      "hist_corr_xx": {"xmin": -34, "xmax": 45, "ymin": -30, "ymax": 30, "nbinsx": 200, "nbinsy": 200}
138
139
                      "hist corr vy" : {"xmin" : -40, "xmax" : 40, "ymin" : -32, "ymax" : 32, "nbinsx" : 70, "nbinsy" : 200},
                      "hist res x": {"xmin": -34, "xmax": 45, "ymin": -10, "ymax": 10, "nbinsx": 200, "nbinsy": 200},
140
                     "hist res y" : {"xmin" : -40, "xmax" : 40, "ymin" : -10, "ymax" : 10, "nbinsx" : 70, "nbinsy" : 200},
141
                      "geo node path": "/cave 1/trd v22h mcbm 0/layer02 10202/module8 101002001".
                      "center": [0.000000, 0.000000, 175.700000],
143
144
                      "rot axis x" : [1.000000, 0.000000, 0.000000]
145
                      "rot axis v" : [0.000000, 1.000000, 0.0000000]
                      "rot axis z" : [0.000000, 0.000000, 1.000000]
146
147
                      "corr plane z offset": -11.9
148
149
150
                      "id": 503,
                      "name": "TRD Module 37 (1D-Y)",
                      "hist corr xx" : {"xmin" : -50, "xmax" : 40, "ymin" : -40, "ymax" : 50, "nbinsx" : 70, "nbinsy" : 200},
                     "hist_corr_yy" : {"xmin" : -50, "xmax" : 40, "ymin" : -40, "ymax" : 50, "nbinsx" : 200, "nbinsy" : 200},
154
                     "hist_res_x": {"xmin": -50, "xmax": 40, "ymin": -10, "ymax": 10, "nbinsx": 70, "nbinsy": 200},
                      "hist res y": {"xmin": -50, "xmax": 40, "ymin": -10, "ymax": 10, "nbinsx": 200, "nbinsy": 200}
156
                      "geo node path": "/cave 1/trd v22h mcbm 0/layer03 11303/module8 101303001",
                      "center": [0.000000, 0.000000, 202.700000],
158
                      "rot axis x" : [-0.000000, -1.000000, 0.000000]
159
                     "rot_axis_y": [1.000000, -0.000000, 0.000000], "rot_axis_z": [0.000000, 0.000000, 1.000000],
160
                      "corr plane z offset": -11.9
```

Config File

Contains all modules, identified by unique id (user-definable), grouped in

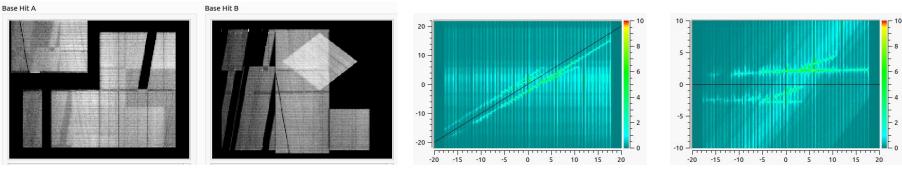
1. Modules used for Base Hit A (STS Unit 0)

2. Modules used for Base Hit B (STS Unit 1)

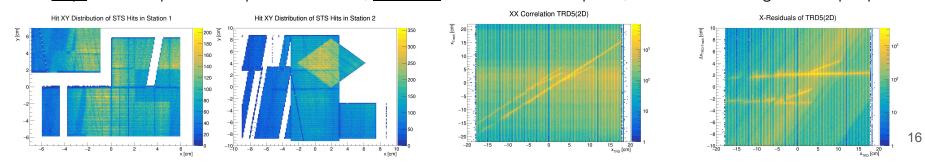
3. Modules to correlate with (TRD Modules)

- Allows to set all histogram axis limits and binnings individually per module
- Contains root geo node paths
 - Used to export alignment matrices to CbmRoot compatible macro
- Contains module center positions
 - Used for determining the plane of the modules to correlate with
 - Used for module rotation
- Contains rotation axes (x, y, z)

 Geo node paths, center positions and rotation axes can be extracted out of existing root geometries using GetGeometryModulePositions.C macro

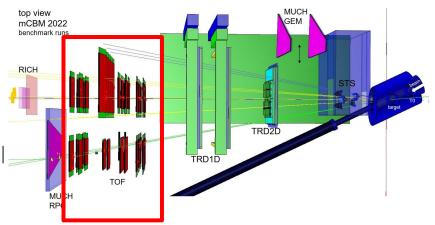

Import/Export of Alignment Matrices

- Alignment matrices for each TRD and STS module can be loaded from and saved to a ROOT macro
 - Produces a root file directly compatible with CBM reconstruction chain


```
int create alignment mcbm beam 2022 05 23 nickel()
 // Define the basic structure which needs to be filled with information
 // This structure is stored in the output file and later passed to the
 // FairRoot framework to do the (miss)alignment
 std::map<std::string, TGeoHMatrix> matrices:
 matrices.insert(AlignNode("/cave 1/sts v22f mcbm 0/Station01 1/Ladder09 1/HalfLadder09d 2/HalfLadder09d Module03 1", 0, -0.03, 1.05, 0, 0, 0));
 matrices.insert/AlianNodet"/cave 1/sts v22f mcbm 0/Station01 1/Ladder09 2/HalfLadder09d 2/HalfLadder09d Module03 1", 0, 0.03, 0.72, 0, 0, 0);
 matrices.insert(AlignNode("/cave 1/sts v22f mcbm 0/Station01 1/Ladder09 1/HalfLadder09d 2/HalfLadder09d Module03 2", 0.03, 0.99, 0, -3, 0))
 matrices.insert(AlignNode("/cave 1/sts v22f mcbm 0/Station01 1/Ladder09 2/HalfLadder09d 2/HalfLadder09d Module03 2", 0, -0.015, 0.51, 0, 0, 0));
 matrices.insert(AlignNode("/cave 1/sts v22f mcbm 0/Station02 2/Ladder10 1/HalfLadder10d 2/HalfLadder10d Module03 1", 0.39, 0, 0.32, 0, 0, 0));
 matrices.insert(AlignNode("/cave 1/sts v22f mcbm 0/Station02 2/Ladder12 2/HalfLadder12d Z/HalfLadder12d Module03 1", 0.33, -0.06, 0.87, 0, 0, 0));
 matrices.insert(AlignNode("/cave 1/sts v22f mcbm 0/Station02 2/Ladder11 3/HalfLadder11d 2/HalfLadder11d Module03 1", 0.36, 0.03, 0.45, 0, 0, 0));
 matrices.insert(AlignNode("/cave_1/sts_v22f_mcbm_0/Station02_2/Ladder10_1/HalfLadder10d_2/HalfLadder10d_Module04_2", 0.36, 0.03, 0.28, 0, 0, 0);
 matrices.insert(AlignNode("/cave_1/sts_v22f_mcbm_0/Station02_2/Ladder12_2/HalfLadder12d_2/HalfLadder12d_Module04_2", 0.3, -0.03, 0.48, 0, 0, 0));
 matrices.insert(AlignNode("/cave 1/sts v22f mcbm 0/Station02 2/Ladder11 3/HalfLadder11d 2/HalfLadder11d Module03 2", 0, 0, 0, 0, 0, 0)
 matrices.insert/AlignNode("/cave 1/sts v22f mcbm 0/Station02 2/Ladder11 3/HalfLadder11d 2/HalfLadder11d Module03 3", 0.3, 0.005, 0, 0, 0):
 matrices.insert(AlignNode("/cave 1/trd v22h mcbm 0/layer01 20101/module9 101001001", -0.03, -0.21, 0.63, 0, 0, 0));
 matrices.insert(AlignNode("/cave 1/trd v22h mcbm 0/laver02 10202/module8 101002001", 0.3, 0, 0, 0, 0, 0));
 matrices.insert(AlignNode("/cave 1/trd v22h mcbm 0/layer03 11303/module8 101303001", 0, -0.6, 0, 0, 0, 0));
 // save matrices to disk
 TFile* misalignmentMatrixRootfile = new TFile("AlignmentMatrices mcbm beam 2022 05 23 nickel.root", "RECREATE"):
 if (misalignmentMatrixRootfile->IsOpen()) {
  qDirectory->WriteObject(&matrices, "MisalignMatrices");
  misalignmentMatrixRootfile->Write();
  misalignmentMatrixRootfile->Close():
 return 0:
```

Test of Alignment Matrices in CbmRoot

- Control plots of the tool are re-plotted in CbmRoot using exported alignment matrices
 - Plots match, so alignment tool correctly reproduces CbmRoot geometry transformations



Top: Control plots computed on GPU, Bottom: CbmRoot Reco plots, modules misaligned on purpose

Outlook: Inclusion of TOF

- After TRD and STS are aligned well, one could replace the second base hit with e.g. TRD2D or one of the TRD1Ds
 - Larger lever arm
 - Would take the alignment of the other modules take into account indirectly
- One could also try to implement a real fit routine on GPU
 - Is already used in diffusion Magnetic
 Resonance Imaging (dMRI)
 [https://github.com/robbert-harms/MOT]

Source Code Download

 Source code is available on Git:

https://git.cbm.gsi.de/trd/software-extra/CbmRealtimeAlignTool

- Readme provides
 instructions how to compile
 and run the tool and how to
 produce the necessary input
 data set using CbmRoot
 - Input data is also available for download for use without CbmRoot

CbmRealtimeAlignTool

General Information

This tool was developed to adjust and try out alignment matrices for CBM detectors and see their effect on spatial correlations. The tool accepts events stored in a structure AlignEvent which is saved sequetially in an input file data/2391.alignev.data and loaded into the GPU VRAM. Using these events, correlation plots are calculated directly on the GPU with the user-specified alignment matrices and displayed within milliseconds. This enables the user to interactively find a suitable alignment. See the talk "Interactive (semi-automatic) alignment display" (https://indico.gsi.de/event/17503/) for an overview of the tool.

Pre-Requirements

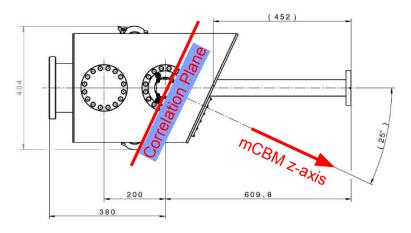
- · Qt6 or Qt5
- Qwt 6.2.0 (https://gwt.sourceforge.io/gwtinstall.html)
- · For development it is recommended to download and install QtCreator (https://www.qt.io/download).

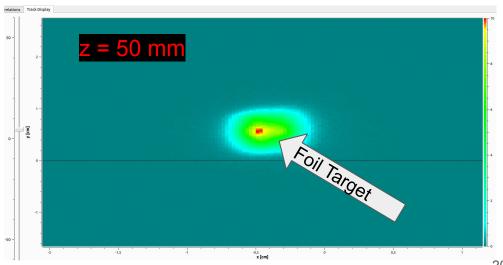
Compilation

```
git clone https://git.cbm.gsi.de/trd/software-extra/CbmRealtimeAlignTool.git src
mkdir build
cd build
cmake -DCMAKE_INSTALL_PREFIX=../inst ../src
make -j install
```

Getting Alignment Events

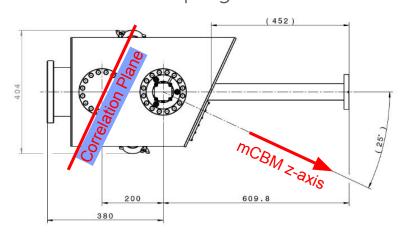
Alignment events are currently events which have exactly 2 STS hits in two different stations (to have a clean sample). They can be produced by running this FairTask with your CbmRoot over your data: https://git.cbm.gsi.de/apuntke/cbmroot/-/blob/master/analysis/detectors/trd/CbmTrdAlignmentEventSelector.h Example initialization:

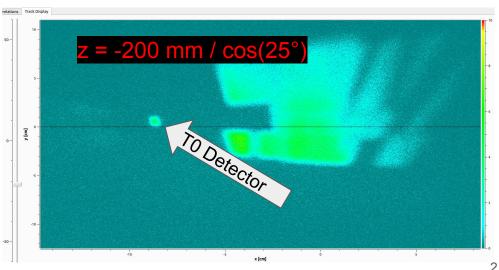

```
CbmTrdAlignmentEventSelector* trdAliEventSelTask = new CbmTrdAlignmentEventSelector();
trdAliEventSelTask->SetOutfile(Form("%s.alignev.data", sOutFileBase.Data()));
run->AddTask(trdAliEventSelTask);
```

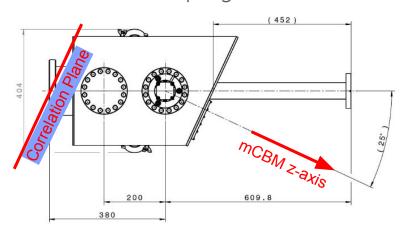

Possible Application in upcoming mCBM Beamtime

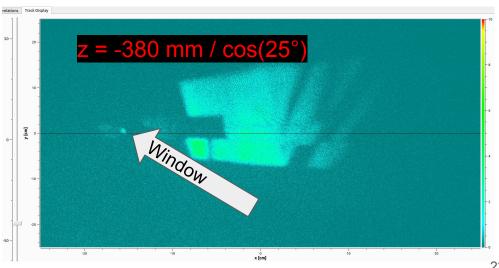
- Collect data in NiNi run (low multiplicity) for ~ 20 min
 - No L1 tracking needed, we are not dependent on L1 developers (in case L1 tracking does not run from day 1 out of the box)
- Extract AlignEvents and load into alignment display
 - As seen in previous slides
- Zero all residuals by adjusting alignment parameters
- Apply alignment and extract second set of AlignEvents, this time including TOF hits as reference hits (instead TRD)
- Also align TOF using the same procedure as for TRD

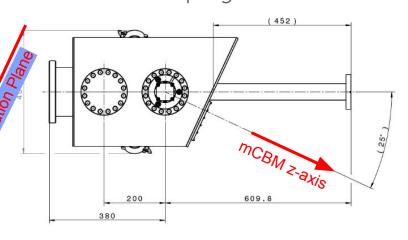
- Displays the distribution of intersection points of a plane perpendicular to z-axis and reference tracks (alignment matrices applied)
- Allows to see structures inside of the target chamber (target tomography)

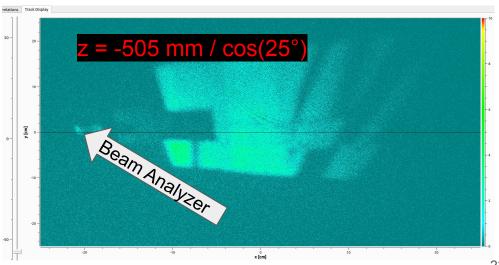

 Available in git branch "trackdisplay"

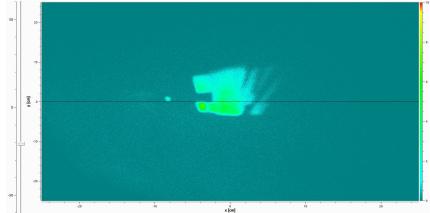


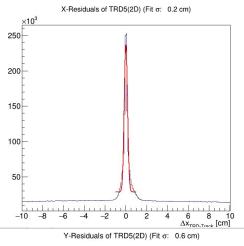

- Displays the distribution of intersection points of a plane perpendicular to z-axis and reference tracks (alignment matrices applied)
- Allows to see structures inside of the target chamber (target tomography)


Available in git branch "trackdisplay"

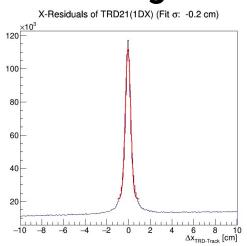


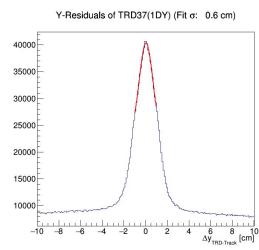

- Displays the distribution of intersection points of a plane perpendicular to z-axis and reference tracks (alignment matrices applied)
- Allows to see structures inside of the target chamber (target tomography)
- Available in git branch "trackdisplay"


- Displays the distribution of intersection points of a plane perpendicular to z-axis and reference tracks (alignment matrices applied)
- Allows to see structures inside of the target chamber (target tomography)
- Available in git branch "trackdisplay"



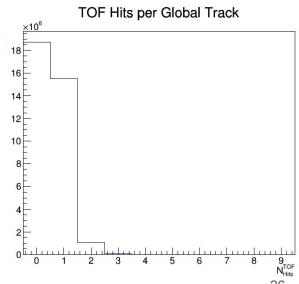
How to evaluate the Quality of the Alignment?


- Residuals and HitX-TrackX correlations are 0 or on angle bisector by definition
- Structures of target chamber (previous slide) are also visible without applying any alignment
 - Not suitable for quality evaluation
- Other plots would be nice to evaluate the alignment quality

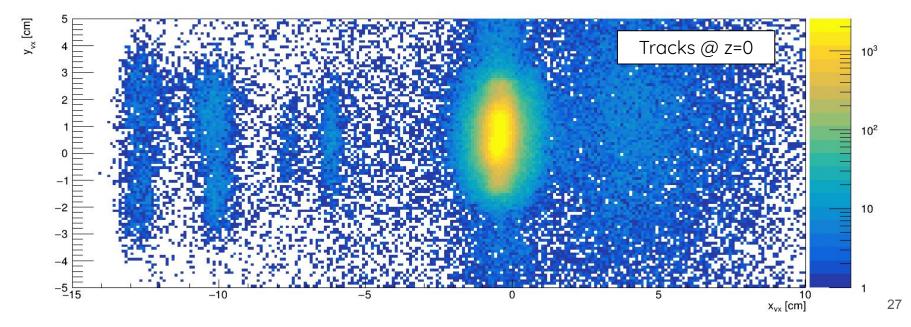


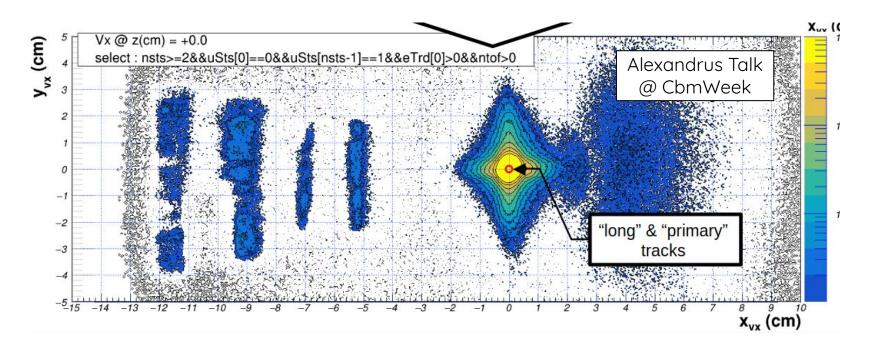
Resolution Determination using Reference Tracks?

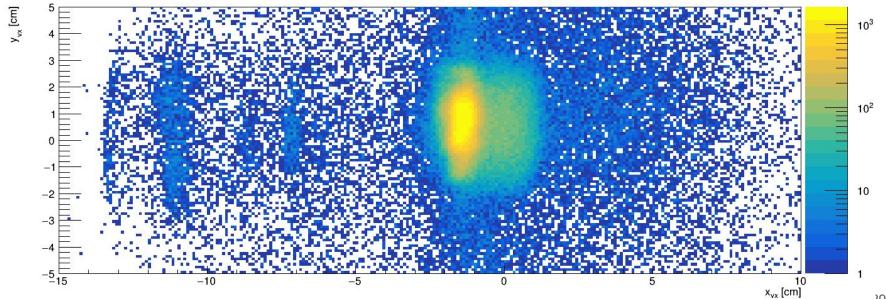


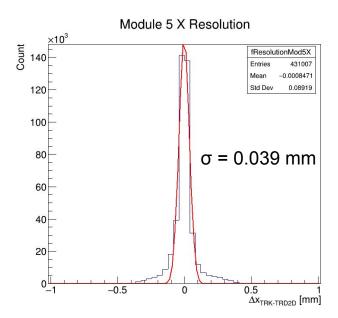


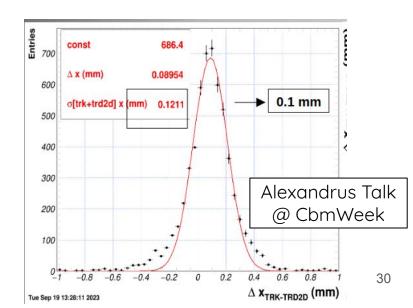
- Using official alignment from CbmRoot computing master
- Does not archive the resolutions obtained by Alexandru @ CbmWeek
- L1 Global Tracks needed with more than 2 hits


- L1 Track Selection: 2 STS Hits, ≥ 1 TRD Hits, ≥ 1 TOF Hits
- Fit straight line through STS hits and TRD1D hit
- Using official alignment from CbmRoot computing master




- L1 Track Selection: 2 STS Hits, ≥ 1 TRD Hits, ≥ 1 TOF Hits
- Fit straight line through STS hits and TRD1D hit
- Using **official alignment** from CbmRoot computing master


- Comparable to Alexandrus results
 - But his target spot is more central at (0,0), so probably he uses different alignment than CbmRoot master



• Cross-check: Without any alignment

- Calculating module resolutions:
 - Plots do not match yet with Alexandrus ones
 - o Resolution too small, probably because fit is done without respecting uncertainties
- Need to ask Alexandru for exact procedure he uses to obtain these plots

Summary

- Tool allows to produce alignment matrices with the input of the user
- Alignment matrices are correctly applied (cross-checked with CbmRoot)
- Tool can help to produce an alignment for next mCBM beamtime faster than in the past
- Alignment quality evaluation is in progress
 - Outlook: Sergey will provide a fitting routine for the L1 tracks in the next days
 - o Then we will have a common base for the reference tracks to work with

Backup

Alignment Strategy (Draft)

- For each STS module from Unit 0
 - Set this module as solo module for this unit
 - For each STS module from Unit 1
 - Set this module as solo module for this unit
 - Adjust translation parameters such that histograms match with helping lines
- If all modules of a station show e.g. the same non-zero z-shift, reset it to 0 and try to compensate it by moving the TRD correlation module in z
- Method has currently to be done by hand
 - Automation possible by eg. providing a script interface

Performance & Optimization Possibilities

- Computation of Histograms on GPU in 10-50 ms (NVIDIA GeForce GTX 1080, 2560 cores @ 1733 MHz, no performance optimization done yet)
- OpenCL work group size set automatically, maybe performance can be higher if set manually
- Rotation matrices could get pre-computed per module on CPU
 - Currently rotation is done around every axis separately and separately every processed event
 - Lots of computation time could be saved here
- Reference hits could be selected more strict, by e.g. applying already a fit in the FairTask and reject very incompatible hits
 - o Reduction of AlignEvent structure size possible, therefore more statistics possible

Scalability

- Since parallelization happens at the level of events, and each event is processed independently, the problem is highly scalable
 - Currently only up to 20 different module IDs are supported, but this is extendable
- Different event sets could be loaded into different GPUs
 - Resulting histograms are then merged in the end
 - No limitation in event count if you have enough GPUs
 - GPUs must not necessarily be in same machine, multiple machines could be connected as slaves to a master server which distributes the alignment matrices to apply and collects & merges the histograms in the end