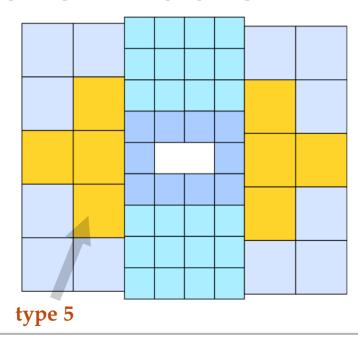
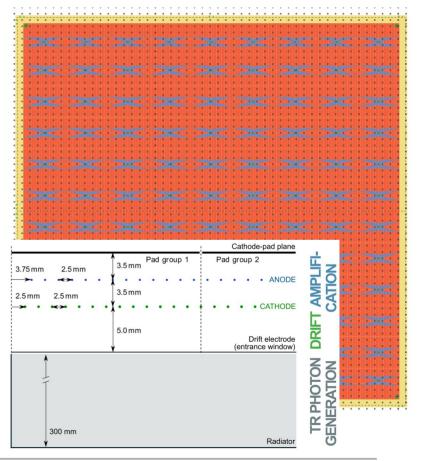
TRD chamber type 5 production

TRD retreat, Dorfweil/Taunus, 07 November 2023


Philipp Kähler


overview

- production status
- production step details
- QA
- issues

type 5, design count

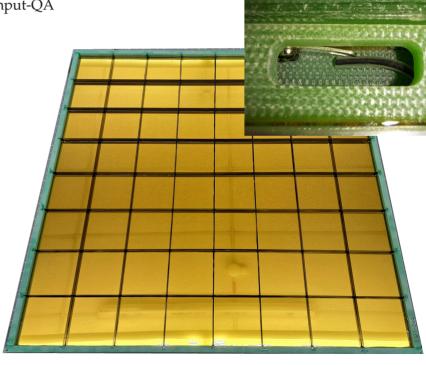
- **32+3 TRD chambers**, 990 mm x 990 mm, 144 x 24 pads
- highest pad granularity of outer TRD, 6.7 mm x 40 mm
- 2 preseries chambers produced, shall serve as base for PRR measurements
- component production ongoing: backpannel carriers, entrance windows

production status, type 5

split production
 Ms entrance window, backpanel referencing, padplane glueing
 Fra wire winding & mounting (both layers), chamber closing

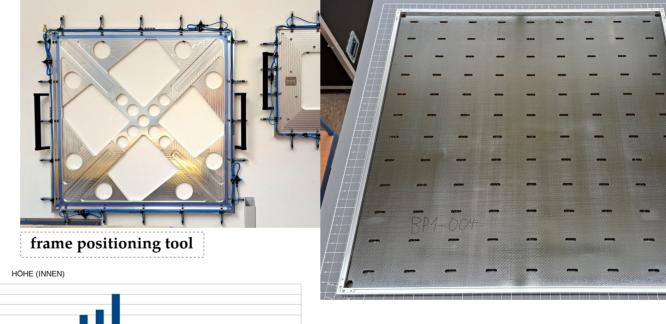
entrance windows 22 35 backpanel carriers 10 backpanels with padplane 2 chambers wired & closed 2 35

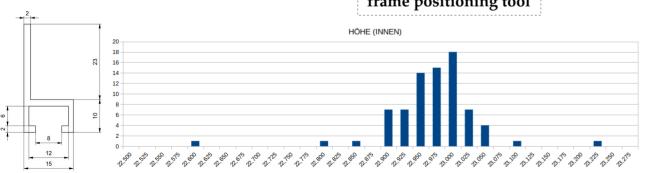
- timeline (target):
 - scale up to 1 chamber per week, starting early 2024
 - required: preseries confirmation & PRR


transport

- batches of 5 to 10 (windows + backpanels)
 Ms → Fra
- further component boxes are being prepared
- keep boxes @IKF for storage?
- return 5 to 10 chambers to Ms for QA & storage
- transport containment t.b.d.

component: entrance window

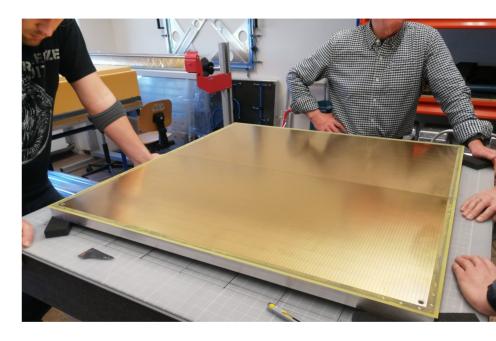

- entrance window foil
 - new batch of Al-coated polyimide (*Kapton*, 25 μm) foil received, sufficient coverage for full TRD production
 - Al-coating ~ 50 ... 100 nm strongly depends on foil conditions → accurate input-QA
 - Al layer as moisture barrier, defined by thickness and homogeneity
 - optical inspection: screening agrees with earlier production, Al weighting: ~ 70 ... 80 nm, humidity transmission: talk Felix, ~ compatible range
 - → input parameter for gas system demands
- pre-stretching of foil on thermal desk, acrylic glas
 - flatness optimised by symmetrical design
 - PID controller for temperature, constant ΔT
 - monitor stretcher expansion, replace if necessary
- cut of foil 2 mm behind outer edge, HV safety
- re-order window ledges after partial usage for test chambers

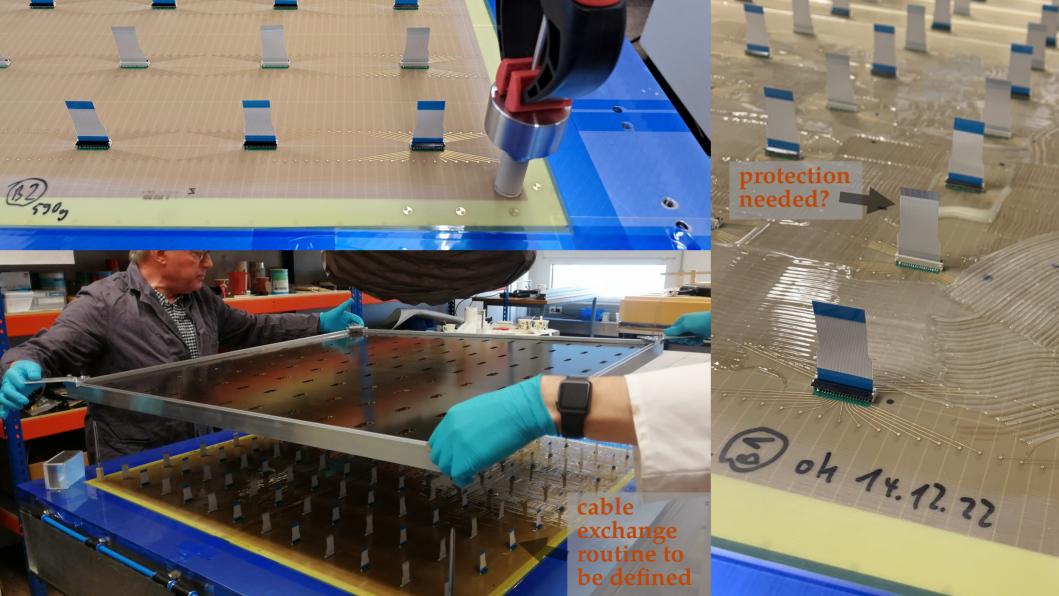


component: backpanel carrier

- revised Al frame, extrusion according to own design, profile notch integrated (e.g. gas inlet fixation)
- height matching honeycomb

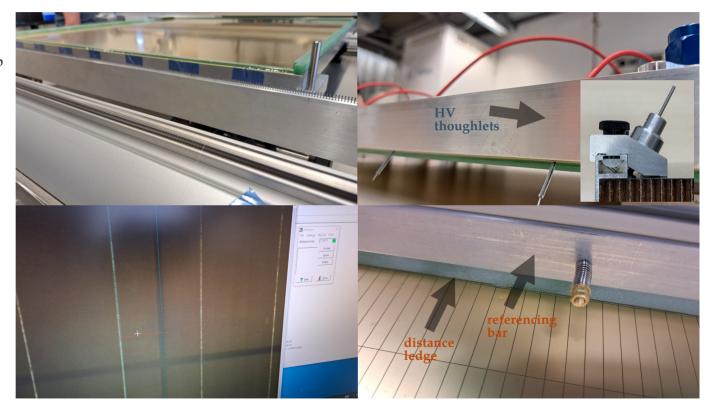
 Al profile
- signal cable openings by water jet cut, inhouse



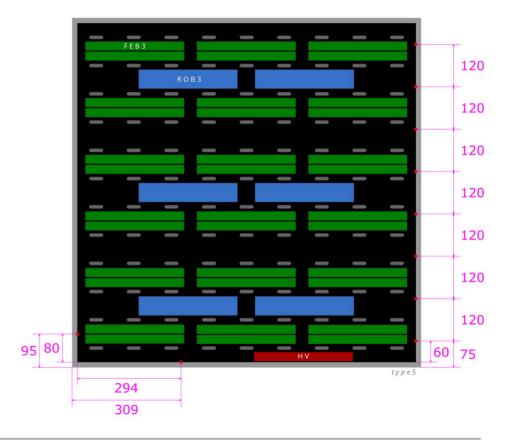

component: backpanel

padplane

- 4-layered PCB, intrinsic gas tightness by displacedvias
- 2 segments per chamber alignment using gas mounts in PCB
- ENIG surface, 0.05 to 0.10 μm Au
- external/automatised soldering of signal connectors
- revised glueing process:no carrier foil, directly on vacuum table
 - glueing test to honeycomb:
 < 20 μm flatness (segment edge),
 < 10 μm within segments
 - epoxy Araldite 2011: ~ 400 g/m², monitored
- batches: 8 half v1 + 10 half v2 + 52 half v2
 - v1 design problematic during ENIG handling, contact curing @Ms
 - v2 with change of Cu balance, improve handling for manufacturer



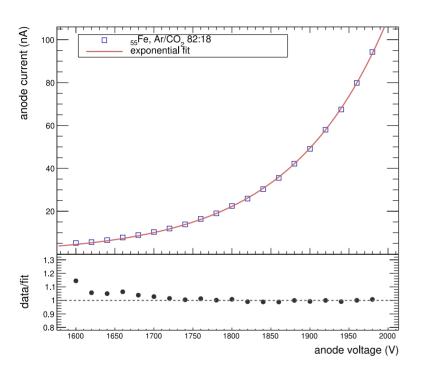
component: wire system

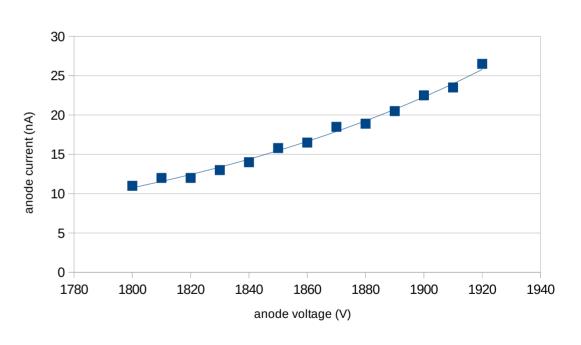

layer alignment

- pitch regularisation and positioning with precision comb
- outermost cathode: 2.5 mm from ledge
- outermost anode: 1.25/3.75 mm
- define tolerance
- wire ledge system
 - new referencing bar developed
 - revised glue dosing (gas tightness), define
- wire contacting
 - new drilling tool for HV throughlets
 - 8 anode segments (decoupling)
- atmosphere: 23 ... 30 °C, < 30% rH for HV-safe epoxy

type 5, outlook, backside layout

- HV contacting arranged according to drawing (this slide)
- FEB and ROB arrangement to be confirmed, depending on layout
 - FEB layout @ Fra,
 ROB project started @ Ms




QA

- regular measurements:
 - gas tightness, direct measurement (talk Felix)
 → every chamber
 available,
 first chamber: (0.83 + 0.33) ml/h
 - humidity collection (talk Felix)
 → first 10 chambers, then define available, clarify dependencies
 - gas gain scan
 → every chamber
 auto-test stand available, awaiting new ⁵⁵Fe source
 - readout test
 → every chamber
 after FEE equipment, single-FEB test before
- install comprehensive test stand in Ms

"chamber 0", begin of gain scan

prototype chamber, type 8/2016, scan 2020 ~1 source halftime in between

first chamber, type 5

"chamber 0", HV situation

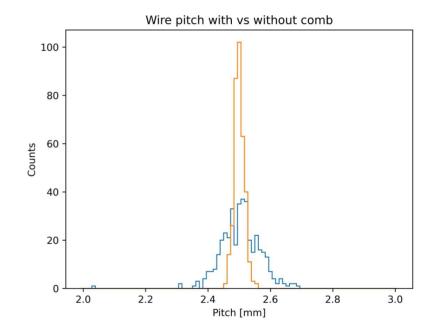
- chamber HV stable over hours @ 1900 | -500 V with 7 of 8 anode segments connected
- dark currents < 150 nA
- with 8 of 8 segment connected, trips reproducible @ 1100 ... 1200 V
 - instant current rise
 - few times such trip triggered LV-current behaviour, which then cures
- gravitational sag of outermost wire should not be relevant, ~ 40 μm
- strategy:
 - exclude electrostatic sag by comparison to segment on other side
 - reconsider 1.25/3.75 mm anode-to-ledge question
 - optical inspection of wire contacting region
 - consider HV test series with epoxy batch
 - identify current (charge) path

summary

PRODUCTION

- chamber production type 5,
 32 +3 chambers
 - 2 chambers produced
 - production of components ongoing in advance,
 i.e. entrance windows and backpanel carriers
- transport modus Ms
 ← Fra suggested
- presentation of production step details
- touched given and open value defintions, e.g. glue dosing amounts

OA AND ISSUES


- QA being commissioned, further deploy test stand in next weeks
 - awaiting new ⁵⁵Fe source for spatially resolved (pad) gain map
 - gas tightness and humidity measurements available
- gas tightness measured within limits,
- first chamber shows good HV stability except for one anode segment
 - test strategy being followed

END

(backup following)

direct wire pitch measure?

- wire tension device can extract also wire positions
 - main uncertainties from linear drive, but not from actual wire positions
 - improvement of linear drive?
 might not be necessary, documentary only.

