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1. Non-perturbative QFT for T > 0

* QFTs can be defined using a core set of physically-motivated axioms

— Applies to simple QFTs, but generally a work in progress...

Axiom 1 (Hilbert space structure). The states of the theory are rays in a Hilbert
space H which possesses a continuous unitary representation Ula, o) of the Poincaré
SPINOT group MT .

Axiom 2 (Spectral condition). The spectrum of the energy-momentum operator
PP is confined to the closed forward light cone V¥ = {p" | p* = 0, p" = 0}, where
Ula,1) = et™an,

Axiom 3 (Uniqueness of the vacuum). There exists a unit state vector |0} (the A WI' gh tman
vacuum state) which is a unique translationally invariant state in H. ’
[R. F. Streater and A. S. Wightman, PCT,

Axiom 4 (Field operators). The theory consists of fields ') (x) (of type (k)) which
{ P ) Y J fields o™ (x) (of type (r)) whic Spin and Statistics, and all that (1964).]

have components p}"'(.z'} that are operator-valued tempered distributions in ‘H, and the

vacuum state |0y is a cyclic vector for the fields.

. ¢ PR . s + K} . .
Axiom 5 (Relativistic covariance). The fields ,JJ[ (x) transform covariantly under
the action of )"’1 :

Ula,a)" (@)U (a,a) ! = 5'7.[::(0 ])pl';“:(;'\(n),r +a)

where S(e) is a finite dimenstonal matriz representation of the Loventz spinor group
ff”IT and A(a) is the Lorentz transformation corresponding to oo € & T

Axiom 6 (Local (anti-)commutativity). If the support of the test functions f, g of

the fields o™, o) are space-like separated, then:

(i), 02 (@)]+ = o™ (e (g) £ 5 ()™ (f) = 0

B . - v .: ': { !
when applied to any state in H, for any fields )", o).

R. Haag

* Conclusion: correlation functions (0/¢;™ (z1)--- ¢\ (x,)|0) encode all of

[R. Haag, Local Quantum
Physics, Springer-Verlag (1996).]

the dynamical information — what properties do these have?



1. Non-perturbative QFT for T > 0

* To describe physical phenomena in “extreme environments” one

must understand of how QFT applies to systems that are hot,

dense, or both

* Therefore need to figure out how the inclusion of temperature T=1/f or
density modifies the standard QFT assumptions, and what effect this

has on the correlation functions.

— In this talk | will restrict to T > 0 and vanishing density



1. Non-perturbative QFT for T > 0

* Idea: Look for a generalisation of the standard axioms that is

compatible with T > 0, and approaches the vacuum case for T— 0

Axiom 1 (Hilbert space structure). The states of the theory are rays in a Hilbert
space H which possesses a continuous unitary representation Ula, o) of the Poincaré

spinor group )ﬂT :

Axiom 2 (Spectral condition). The spectrum of the energy-momentum operator
P* is confined to the closed forward light cone VY = {p* | p* > 0, p" > 0},
Ua, 1) = e,

where

Axiom 3 (Uniqueness of the vacuum). There exists a unit state vector |0) (the

vacuum state) which is a unique translationally invariant state in H.

Axiom 4 (Field operators). The theory consists of fields ' (x) (of type (k) ) which
have components p}":(.z'} that are operator-valued tempered distributions in H, and the

vacuum state |0) is a cyclic vector for the fields.

. . (&) . .
Axiom 5 (Relativistic covariance). The fields ;" (x) transform covariantly under

the action of J”1| :
(x)(a,a) ' = "(Ala)x + a)

where S(av) is a finite dimensional matriz representation of the Lorentz spinor group

Ula, a)p!” 5'1.[?'1'((} ').,:";."

,fT and A(a) is the Lorentz transformation corresponding to o € 728

Axiom 6 (Local (anti-)commutativity). If the support of the test functions f, g of

+ 2 s .
the fields @™, o\5") are space-like separated, then:

el ). 28N @) = e (F)e% (9) £ &% (@)™ (f) =0

when applied to any state in H, for any fields o™, o).

l

N
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: The fields no longer transform :
| under general unitary Lorentz
i transformations I

— O OO S C O e OO o — — OO — —

i Locality is unaffected by the
: properties of the background state. :
This is important! |



1. Non-perturbative QFT for T > 0

* At finite T spectral functions p(w,p) play a particularly important role

p(W,ﬁ) — /d4x ez’(wmo—ﬁ-f)<96| [¢(x>7¢(0)] ’Q5>
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* Spectral functions also enter into the calculation of numerous important

observables (transport coefficients, particle production rates, etc.)

Important question: Can general spectral function characteristics be

disentangled from model-dependent effects?



2. Causality constraints

* Let's consider the general properties of the spectral function of a scalar field

Field locality = |p(w,p) = / ds /d4u e(w — ug) 0((w — ug)? — (P — @)* — s) U(u,s)
0

[@(x), P(y)]=0
for (x-y)°< 0

— “Jost-Lehmann-Dyson (JLD) representation” [R. Jost, H. Lehmann Nuovo Cim. 5, 1957;

F.J. Dyson, Phys. Rev. 110, 1958]: precursor to all causal spectral representations!

e.g. p(s)=6(s-n’) |

} for free theory |

Imposing Lorentz invariance = | p(w,p) = 2:«-re(w)/ ds §(p* — s) o(s)
0

* Note: the splitting p(w,p) = W(w,5) - W(-w,—p) does not uniquely relate the
(p-space) two-point function to the spectral function p(w,p)

But... if we impose the spectral condition = | W(w, ) = 0(w)p(w,p)

* From this, all the standard vacuum QFT results follow, | oc
)

including the propagator Kallén-Lehmann representation i




2. Causality constraints

* But what about the situation when 7T >0 7

> Field locality ¥ — the JLD representation is still valid

> Lorentz invariance X — but can retain rotational invariance

> Spectral condition X — replaced by the KMS condition, which

implies the relation:

W(w’m _ p(W,ﬁ)

1—eBw

* Taking all of the T >0 constraints into account one finds*

(w,p) = /de/ Gl e(w) d(w? — (p— @)% — s) Dp(i, s

)

.~y '

iiiiiiiiiiiiiiiiiiiiii

* This is the T > 0 generalisation of the Kallén-Lehmann representation

— In position space the two-point function has the form:

W) = (@alo@)oO10) = [ dsWi@)Ds(

G

' Superposition of free correlators

" modulated by the factors Dy(x,s) |

L .- . . . _ .

* See: J. Bros and D Buchholz, Z. Phys. C 55 (1992), Ann. Inst. H.Poincare Phys. Theor. 64 (1996)



2. Causality constraints

* Proposition: the medium contains “Thermoparticles”: particle-like constituents

which differ from collective quasi-particle excitations, and show up as discrete

contributions [Bros, Buchholz, NPB 627 (2002)]

—

Dg(t,s) = Dy, (@) 6(s — m?2) + D, g(, s)

—

— Thermoparticle components Dy(u)8(s-m?) reduce to those of a vacuum particle state

with mass m in the limit T — 0

— Non-trivial “Damping factor” 53(“) results
in thermally-broadened peaks in the spectral
function, i.e. parametrises the effects of

collisional broadening

— Component DJCIB(u,s) contains all other

types of excitations, including those that

are continuous in s

5-0)

plw,p

L.5¢
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~—__ Broadening from D,,s(u) |

is model dependent




3. Spectral properties from Euclidean data

* In many instances Euclidean data is used to calculate T > 0 observables,

e.g. spectral functions p{w,p) from Cr(r,%) = (Or(r,%) Or(0,0))r where O is

some particle-creating operator

CF (.5 = / dw cosh E— |T|) w}

sinh (ﬁ )

Pr(waﬁ)

— Determine p{w,p) given EF(T,p): problem is ill-conditioned, need more information!

* Another quantity of interest in lattice studies is the spatial correlator

> dw
/ - pf(wapl = P2 = 0,}73)
0

d
r(z3) / d.rl[ dig/ dr Cr(t [ 2}:_% e'P3ts

W

2.00

1.75

* Large-x; behaviour C(x;) ~ exp(-mq.|x3|)

used to extract “screening masses” m.(T) 1

0254 . —~

0.00

T[GeV] # pseudo scalar

T T T
0.15 0.20 0.25 0.30

[HotQCD collaboration,
PRD 100 (2019)]



3. Spectral properties from Euclidean data

oal: Use the additional constraints imposed by causality to better understand

how spectral features manifest themselves in Euclidean data |

* Causality implies a general connection between the spatial correlator and

thermal spectral density [P.L., PRD 106 (2022); P.L., O. Philipsen, JHEP 10, 161 (2022)]

—_—— s — — — e — — — s — — — - — — o

1 [ e | |
C(xs) = 2/ ds/ dR e*R\/EDg(R, s) = Thermal spectral density
0 ] | in position space }

— Thermoparticle states give rise to C(x;) -
1 > —m; R
contributions that are particularly Clas) = B Z / dR """ Dy, p(R)

i—1  |x3]

significant in the large-x; region

* Once the damping factors of these states are know one can use the T > 0

spectral representation to compute their analytic contribution to p(w,p)



3. Spectral properties from Euclidean data

* Can now apply these relations to QCD lattice data — simple case is the

spatial correlator Cp¢(x;) of pseudo-scalar meson operator

O%S = E'}% %w

— Pseudo-scalar mesons composed of two light quarks [P.L., O. Philipsen, 2022]
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* Work is ongoing [D. Bala, O. Kaczmarek, P. Lowdon, O. Philipsen, and T. Ueding] to

extend this to heavier quarks (light-strange and strange-strange)
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— This approach can discriminate between different ground state hypotheses



4. Revisiting T > 0 perturbation theory

It has long been understood that T > 0 perturbation theory has

complications: non-analytic contributions, IR divergences, ...

In fact, Weldon [PRD 65 (2002)] showed that the perturbative procedure in ®*
theory fails at 2-loop order because the self-energy (k) has a branch point

on the perturbative mass shell k,=E(k)

— This is a generic feature of perturbative

computations that use free thermal

propagators, or in fact any propagators
that have a real dispersion relation p,=E(p)

Gr(p) =

1

(po +i€)? — E(p)*

Why? — Interactions with the thermal medium persist, even for large times,

so need to take this into account in the definition of scattering states!
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4. Revisiting T > 0 perturbation theory

QFT reason: the KMS condition is incompatible with on-shell scattering
states and non-zero interactions — “Narnhofer-Requardt-Thirring Theorem”
[Commun. Math. Phys. 92, 247 (1983)]

|dea: Start with propagators that are off shell [Landsman,1988; Weldon, 2002]

— Then perform perturbative calculations with these propagators instead of
free field one. Hypothesised that this could give rise to an IR-regularised
perturbative expansion for T > 0 [Bros, Buchholz hep-th/9511022]

— But what form should these propagators take?

A few ideas [Landsman, 1988; Bros, Buchholz, 2002; Weldon 2002], but seems that

thermoparticle propagators would be a natural candidate

L —k3 +m? + (|p] + k)?
15 " | =R+t (71— w)

ég_)(k'g,ﬁ) = ¢* theory case (Width parameter r~ \/\T )

Can then compare non-perturbative data (lattice, fRG, etc.) with the results from this

perturbative expansion [PL, O. Philipsen, in preparation]



Summary & outlook

* (Causality imposes non-perturbative constraints for T > 0 which have

significant implications
— Spectral properties of thermal correlation functions
— Connection between real-time observables and Euclidean correlators

* So far, only real scalar fields @ with T > 0 have been considered, but this

approach can be extended

— Other hadronic states (baryons, exotic states, ...)

— Higher spin fields/states (fermions, vectors, ...) | :

— Non-vanishing density, |u|>0

* Ultimately, these constraints and methods can help in gaining a better

understanding of physically relevant theories, including QED and QCD
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