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● QFTs can be defined using a core set of physically-motivated axioms   
  

A. Wightman

R. Haag

[R. F. Streater and A. S. Wightman, PCT, 
Spin and Statistics, and all that (1964).]

 [R. Haag, Local Quantum 
Physics, Springer-Verlag (1996).]

1. Non-perturbative QFT for T > 0

→ Applies to simple QFTs, but generally a work in progress...

● Conclusion: correlation functions                             encode all of 
the dynamical information → what properties do these have? 
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● To describe physical phenomena in “extreme environments” one 
must understand of how QFT applies to systems that are hot, 
dense, or both            

● Therefore need to figure out how the inclusion of temperature T=1/β or 
density modifies the standard QFT assumptions, and what effect this 
has on the correlation functions. 

       → In this talk I will restrict to T > 0 and vanishing density   

[Brookhaven National Lab] [Skyworks Digital Inc.] 

1. Non-perturbative QFT for T > 0
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  ● Idea: Look for a generalisation of the standard axioms that is 
compatible with T > 0, and approaches the vacuum case for T → 0

 

             

→

→

→

H
β
 is defined for fixed β=1/T

Replaced by the KMS condition

Instead, thermal background state |Ω
β
>

Fields are still distributions  

The fields no longer transform 
under general unitary Lorentz 

transformations  

Locality is unaffected by the 
properties of the background state. 

This is important!  

 ✓

→

 ✓

1. Non-perturbative QFT for T > 0
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● At finite T spectral functions ρ( ,ω p) play a particularly important role        
      

● Spectral functions also enter into the calculation of numerous important 
observables (transport coefficients, particle production rates, etc.) 

 

 

             

Peak locations and their 
dispersion are related to the 
dynamics of the medium and 

the underlying degrees of 
freedom of the theory  

Important question:  Can general spectral function characteristics be 
                             disentangled from model-dependent effects?

1. Non-perturbative QFT for T > 0
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2. Causality constraints

● Let’s consider the general properties of the spectral function of a scalar field

Imposing Lorentz invariance ⇒

● Note: the splitting                                     does not uniquely relate the    
(p-space) two-point function to the spectral function ρ( ,ω p)  

But… if we impose the spectral condition ⇒

● From this, all the standard vacuum QFT results follow,                           
including the propagator Källén-Lehmann representation     

 

    

Field locality ⇒
[Φ(x),Φ(y)]=0 
for (x-y)2< 0

→  “Jost-Lehmann-Dyson (JLD) representation” [R. Jost, H. Lehmann Nuovo Cim. 5, 1957; 
       F.J. Dyson, Phys. Rev. 110, 1958]: precursor to all causal spectral representations!  

e.g. ρ(s)=δ(s-m2) 
for free theory  
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● But what about the situation when T > 0 ? 

● Taking all of the T > 0 constraints into account one finds*

● This is the T > 0 generalisation of the Källén-Lehmann representation
→ In position space the two-point function has the form: 

“Thermal spectral density” 

* See: J. Bros and D Buchholz, Z. Phys. C 55 (1992), Ann. Inst. H.Poincare Phys.Theor. 64 (1996)

➢ Field locality ✓   →  the JLD representation is still valid
➢ Lorentz invariance ✘  → but can retain rotational invariance
➢ Spectral condition ✘  → replaced by the KMS condition, which      

                                  implies the relation: 

Superposition of free correlators 
modulated by the factors Dβ(x,s)  

2. Causality constraints
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● Proposition: the medium contains “Thermoparticles”: particle-like constituents 
which differ from collective quasi-particle excitations, and show up as discrete 
contributions [Bros, Buchholz, NPB 627 (2002)]

 

→ Thermoparticle components Dβ(u)δ(s-m2) reduce to those of a vacuum particle state    
    with mass m in the limit T → 0

→ Non-trivial “Damping factor” Dβ(u) results                                                         
    in thermally-broadened peaks in the spectral                                                       
    function, i.e. parametrises the effects of                                                             
    collisional broadening 

→ Component Dc,β(u,s) contains all other                                                              
    types of excitations, including those that                                                            
    are continuous in s

             

 Broadening from Dm,β(u) 
is model dependent 

~

~

~

2. Causality constraints
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● In many instances Euclidean data is used to calculate T > 0 observables, 
e.g. spectral functions ρΓ( ,ω p) from                                where OΓ is 
some particle-creating operator                  

● Another quantity of interest in lattice studies is the spatial correlator 

 

             

→  Determine ρΓ( ,ω p) given CΓ(τ,p): problem is ill-conditioned, need more information!

● Large-x3 behaviour CΓ (x3) ~ exp(-mscr|x3|)  
used to extract “screening masses” mscr(T ) [HotQCD collaboration, 

PRD 100 (2019)]

3. Spectral properties from Euclidean data

~
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● Causality implies a general connection between the spatial correlator and 
thermal spectral density [P.L., PRD 106 (2022); P.L., O. Philipsen, JHEP 10, 161 (2022)]

● Once the damping factors of these states are know one can use the T > 0 
spectral representation to compute their analytic contribution to ρ( ,ω p)  

  

             

→  Thermoparticle states give rise to C(x3)       
      contributions that are particularly              
      significant in the large-x3 region

3. Spectral properties from Euclidean data

Goal: Use the additional constraints imposed by causality to better understand 
        how spectral features manifest themselves in Euclidean data

Thermal spectral density 
in position space 
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● Can now apply these relations to QCD lattice data → simple case is the 
spatial correlator CPS(x3) of pseudo-scalar meson operator

→ Pseudo-scalar mesons composed of two light quarks [P.L., O. Philipsen, 2022] 

 

● Work is ongoing [D. Bala, O. Kaczmarek, P. Lowdon, O. Philipsen, and T. Ueding] to 
extend this to heavier quarks (light-strange and strange-strange)

3. Spectral properties from Euclidean data

π

π*
π

π*

Preliminary Preliminary

→ This approach can discriminate between different ground state hypotheses   
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4. Revisiting T > 0 perturbation theory

● It has long been understood that T > 0 perturbation theory has 
complications: non-analytic contributions, IR divergences, ...  

● In fact, Weldon [PRD 65 (2002)] showed that the perturbative procedure in Φ4 
theory fails at 2-loop order because the self-energy Π(k) has a branch point 
on the perturbative mass shell k0=E(k)

→ This is a generic feature of perturbative                                             
    computations that use free thermal                                                   
    propagators, or in fact any propagators                                               
    that have a real dispersion relation p0=E(p) 

● Why? → Interactions with the thermal medium persist, even for large times, 
so need to take this into account in the definition of scattering states!
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● QFT reason: the KMS condition is incompatible with on-shell scattering 
states and non-zero interactions → “Narnhofer-Requardt-Thirring Theorem” 
[Commun. Math. Phys. 92, 247 (1983)]  

● Idea: Start with propagators that are off shell [Landsman,1988; Weldon, 2002]

→ Then perform perturbative calculations with these propagators instead of   
     free field one. Hypothesised that this could give rise to an IR-regularised    
     perturbative expansion for T > 0 [Bros, Buchholz hep-th/9511022] 

             

● A few ideas [Landsman, 1988; Bros, Buchholz, 2002; Weldon 2002], but seems that 
thermoparticle propagators would be a natural candidate

● Can then compare non-perturbative data (lattice, fRG, etc.) with the results from this 
perturbative expansion [PL, O. Philipsen, in preparation]    

4. Revisiting T > 0 perturbation theory

Φ4 theory case (Width parameter              )

→ But what form should these propagators take? 
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Summary & outlook 

● Causality imposes non-perturbative constraints for T > 0 which have 
significant implications

       →  Spectral properties of thermal correlation functions

      →  Connection between real-time observables and Euclidean correlators     

● So far, only real scalar fields Φ with T > 0 have been considered, but this 
approach can be extended

      →  Other hadronic states (baryons, exotic states, ...)

      →  Higher spin fields/states (fermions, vectors, ...)

      →  Non-vanishing density, |μ|>0

● Ultimately, these constraints and methods can help in gaining a better 
understanding of physically relevant theories, including QED and QCD 

Work in progress!
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