Color superconductivity beyond Mean Field Approximation

Ugo Mire In collaboration with: Bernd-Jochen Schaefer Hirschegg, September 12, 2023

1. Color Superconductivity and 2SC Phase

2. Funcitonal Renormalization Group

3. Phase Structure and Astrophysical Applications

Color Superconductivity and 2SC Phase

Why study color superconductivity?

• Relevant for astrophysical observations.

Why study color superconductivity?

- Relevant for astrophysical observations.
- Natural in QCD: attractive gluon exchange → Cooper pairing and superconductivity at high densities.

Why study color superconductivity?

- Relevant for astrophysical observations.
- Natural in QCD: attractive gluon exchange → Cooper pairing and superconductivity at high densities.

which pairing channel?

2SC Phase

2SC phase: condensates of the shape

$$\Delta_A = \langle q^T C \gamma_5 \tau_2 \lambda_A q \rangle , \quad A = 2, 5, 7$$

Main characteristics:

some matrix structure in flavor, color and Dirac space

- Chiral symmetry is not broken.
- Color symmetry is "broken" (Higgs mechanism), but not fully:

$$SU_c(3) \to SU_c(2)$$
.

• Only two color participate in superconductivity.

Funcitonal Renormalization Group

Four-quark interactions in QCD

• Low densities: scalar-pseudoscalar (σ , $\vec{\pi}$) channel dominates

 $(\bar{\psi}\psi)^2 - (\bar{\psi}\gamma_5\tau_i\psi)^2$

 \rightarrow quantitative description of chiral crossover using FRG.

[Fu, Pawlowski & Rennecke; 1909.02991]

Four-quark interactions in QCD

• Low densities: scalar-pseudoscalar (σ , $\vec{\pi}$) channel dominates

 $(\bar{\psi}\psi)^2 - (\bar{\psi}\gamma_5\tau_i\psi)^2$

 \rightarrow quantitative description of chiral crossover using FRG.

[Fu, Pawlowski & Rennecke; 1909.02991]

High densities: diquark channel dominates

[Braun, Leonhardt & Pospiech; 1909.06298]

$$(q^T C \gamma_5 \tau_2 \lambda_A q) (\bar{q} \gamma_5 \tau_2 \lambda_A C \bar{q}^T)$$

 \rightarrow a natural step is to include the diquark channel.

$$S_{\text{QMD}} = \int_{x} \left\{ \bar{q} \left(\partial \!\!\!/ - \mu \gamma_{0} + g_{\phi} \left(\sigma + i \gamma_{5} \vec{\pi} \cdot \vec{\tau} \right) \right) q \right. \\ \left. + \frac{g_{\Delta}}{2} \left(\Delta_{A} q^{T} C \gamma_{5} \tau_{2} \lambda_{A} q - \Delta_{A}^{*} \bar{q} \gamma_{5} \tau_{2} \lambda_{A} C \bar{q}^{T} \right) \right. \\ \left. + \frac{1}{2} (\partial_{\mu} \sigma)^{2} + \frac{1}{2} (\partial_{\mu} \vec{\pi})^{2} \right. \\ \left. + \left((\partial_{\nu} + \delta_{\nu 0} 2 \mu) \Delta_{A}^{*} \right) (\partial_{\nu} - \delta_{\nu 0} 2 \mu) \Delta_{A} \right. \\ \left. + \left. U (\sigma^{2} + \vec{\pi}^{2}, \Delta_{A} \Delta_{A}^{*}) - c \sigma \right\}$$

quark-meson scalar-pseudoscalar channel

$$S_{\text{QMD}} = \int_{x} \left\{ \bar{q} \left(\partial \!\!\!/ - \mu \gamma_{0} + g_{\phi} \left(\sigma + i \gamma_{5} \vec{\pi} \cdot \vec{\tau} \right) \right) q \right. \\ \left. + \frac{g_{\Delta}}{2} \left(\Delta_{A} q^{T} C \gamma_{5} \tau_{2} \lambda_{A} q - \Delta_{A}^{*} \bar{q} \gamma_{5} \tau_{2} \lambda_{A} C \bar{q}^{T} \right) \right. \\ \left. + \frac{1}{2} (\partial_{\mu} \sigma)^{2} + \frac{1}{2} (\partial_{\mu} \vec{\pi})^{2} \right. \\ \left. + \left((\partial_{\nu} + \delta_{\nu 0} 2 \mu) \Delta_{A}^{*} \right) (\partial_{\nu} - \delta_{\nu 0} 2 \mu) \Delta_{A} \right. \\ \left. + \left. U (\sigma^{2} + \vec{\pi}^{2}, \Delta_{A} \Delta_{A}^{*}) - c \sigma \right\} \right\}$$

quark-meson scalar-pseudoscalar channel

quark-meson scalar-pseudoscalar channel

$$\begin{split} S_{\text{QMD}} &= \int_{x} \left\{ \bar{q} \left(\not{\partial} - \mu \gamma_{0} + g_{\phi} \left(\sigma + i \gamma_{5} \vec{\pi} \cdot \vec{\tau} \right) \right) q & \qquad \text{quark-diquark} \\ &+ \frac{g_{\Delta}}{2} \left(\Delta_{A} q^{T} C \gamma_{5} \tau_{2} \lambda_{A} q - \Delta_{A}^{*} \bar{q} \gamma_{5} \tau_{2} \lambda_{A} C \bar{q}^{T} \right) \\ &+ \frac{1}{2} (\partial_{\mu} \sigma)^{2} + \frac{1}{2} (\partial_{\mu} \vec{\pi})^{2} \\ &+ \left((\partial_{\nu} + \delta_{\nu 0} 2 \mu) \Delta_{A}^{*} \right) (\partial_{\nu} - \delta_{\nu 0} 2 \mu) \Delta_{A} \\ &+ U (\sigma^{2} + \vec{\pi}^{2}, \Delta_{A} \Delta_{A}^{*}) - c \sigma \right\} & \qquad \swarrow \quad \text{diquark kinetic} \\ \text{term, couples to } \mu \end{split}$$

quark-meson scalar-pseudoscalar channel

meson and diquark interactions, arbitrary potential constrained by symmetries

quark-meson scalar-pseudoscalar channel

meson and diquark interactions, arbitrary potential constrained by symmetries explicit chiral symmetry breaking term

Some FRG details:

- Local potential approximation (LPA): only scale dependent quantity is the potential $U_k(\sigma, \Delta)$.
 - σ : chiral condensate.
 - Δ : diquark condensate.
 - $U_k \rightarrow \infty$ number of couplings.

Some FRG details:

- Local potential approximation (LPA): only scale dependent quantity is the potential $U_k(\sigma, \Delta)$.
 - σ : chiral condensate.
 - Δ : diquark condensate.
 - $U_k \rightarrow \infty$ number of couplings.
- 3d Litim regulator

$$R_k = (k^2 - \vec{p}^2)\theta(k^2 - \vec{p}^2) \; .$$

Expect back bending from studies of the quark-meson model \rightarrow more on that later.

Some FRG details:

- Local potential approximation (LPA): only scale dependent quantity is the potential $U_k(\sigma, \Delta)$.
 - *σ*: chiral condensate.
 - Δ : diquark condensate.
 - $U_k \rightarrow \infty$ number of couplings.
- 3d Litim regulator

$$R_k = (k^2 - \vec{p}^2)\theta(k^2 - \vec{p}^2) \; .$$

Expect back bending from studies of the quark-meson model \rightarrow more on that later.

Initial conditions:

$$U_{\Lambda} = a_1 \sigma^2 + a_2 \sigma^4 + b_1 \Delta^2 + b_2 \Delta^4$$

depends on
$$E_{\Delta} = \sqrt{(\epsilon_k \pm \mu)^2 + g_{\Delta}^2 \Delta^2}$$

with $\epsilon_k = \sqrt{k^2 + g_{\phi}^2 \sigma^2}$
 \downarrow
 $\partial_t U_k(\sigma, \Delta) = () q_r, q_g () q_b + \frac{1}{2} () () \Delta_2, \sigma$
 $+ \frac{1}{2} () \Delta_2, \sigma$

depends on
$$E_{\Delta} = \sqrt{(\epsilon_k \pm \mu)^2 + g_{\Delta}^2 \Delta^2}$$

with $\epsilon_k = \sqrt{k^2 + g_{\phi}^2 \sigma^2}$
 \downarrow
 $\partial_t U_k(\sigma, \Delta) = -$
 \downarrow
 $d_t U_k(\sigma, \Delta) = -$
 \downarrow
 $q_r, q_g -$
 \downarrow
 $q_r, q_g -$
 \downarrow
 $q_h + \frac{1}{2}$
 \downarrow
 \downarrow
 Δ_5, Δ_7
 $\sim \operatorname{coth} \frac{\epsilon_{\pi}}{2T}$ with
 $\epsilon_{\pi} = \sqrt{k^2 + 2\partial_{\sigma^2} U_k}$
 $\sim \operatorname{coth} \frac{\epsilon_{\Delta} - 2\mu}{2T}$ with
 $\epsilon_{\Delta} = \sqrt{k^2 + 2\partial_{\sigma^2} U_k}$

Pion loops

$$\partial_t U_k = \frac{1}{\epsilon_\pi} \coth \frac{\epsilon_\pi}{2T} + \dots$$

with

Pion loops

$$\partial_t U_k = \frac{1}{\epsilon_\pi} \coth \frac{\epsilon_\pi}{2T} + \dots$$

with

Pion loops

$$\partial_t U_k = \frac{1}{\epsilon_\pi} \coth \frac{\epsilon_\pi}{2T} + \dots$$

with

 \rightarrow_{σ}

with

 $k_{\rm IR}$

 $\epsilon_{\pi} = \sqrt{k^2 + 2\partial_{\sigma^2} U_k}$

Diquark loops

$$\partial_t U_k = \frac{1}{\epsilon_\Delta} \coth \frac{\epsilon_\Delta - 2\mu}{2T} + \dots$$

with

 \rightarrow_{σ}

 $\epsilon_{\Delta} = \sqrt{k^2 + 2\partial_{\Delta^2} U_k}$

$$\partial_t U_k = \frac{1}{\epsilon_\pi} \coth \frac{\epsilon_\pi}{2T} + \dots$$

with

$$\epsilon_{\pi} = \sqrt{k^2 + 2\partial_{\sigma^2} U_k}$$

Diquark loops

$$\partial_t U_k = \frac{1}{\epsilon_\Delta} \coth \frac{\epsilon_\Delta - 2\mu}{2T} + \dots$$

with

 $\epsilon_{\Delta} = \sqrt{k^2 + 2\partial_{\Delta^2} U_k}$

$$\partial_t U_k = \frac{1}{\epsilon_\pi} \coth \frac{\epsilon_\pi}{2T} + \dots$$

with

$$\epsilon_{\pi} = \sqrt{k^2 + 2\partial_{\sigma^2} U_k}$$

Diquark loops

$$\partial_t U_k = \frac{1}{\epsilon_\Delta} \coth \frac{\epsilon_\Delta - 2\mu}{2T} + \dots$$

with

 $\epsilon_{\Delta} = \sqrt{k^2 + 2\partial_{\Delta^2} U_k}$

Possible solution: flow around the Fermi-surface [Braun, Dörnfeld, Schallmo, Töpfel; 2008.05978]

Phase Structure and Astrophysical Applications

$$\begin{array}{c} \partial_t U_k = - & \bigotimes_{\substack{\uparrow \\ \uparrow}} q_r, q_g \\ \uparrow \\ \\ \text{diquarks still present here} \\ E_{\Delta}^{\pm} = \sqrt{(\epsilon_k \pm \mu)^2 + g_{\Delta}^2 \Delta^2} \end{array} + \frac{1}{2} \begin{pmatrix} \bigotimes_{\substack{\frown}} \\ \otimes \\ & & \end{pmatrix}_{\sigma} \\ + \frac{1}{2} \begin{pmatrix} \bigotimes_{\substack{\frown}} \\ & & \end{pmatrix}_{\pi} \\ \end{array}$$

- Look at phase structure.
- First astrophysical applications.

Phase Diagram

• Expected phase structure.

Phase Diagram

• Expected phase structure.

- Expected phase structure.
- Litim regulator in LPA: expect negative entory **but** diquarks reduce the size of the region.

Equation of State

Equation of state p(n) at T = 1

Equation of State

Equation of state p(n) at T = 1

Maxwell construct with hadronic eos DD2

- Maxwell construct for astrophysical applications.
- No crossing with hadronic equation of state (DD2) → introduce bag constant B.

Mass-radius Relationship

- Superconducting core \rightarrow mostly unstable with current diquark parameters.

Charge neutrality (and β -equilibrium) $\frac{2}{3}n_u - \frac{1}{3}n_d - n_e = 0 \quad (\text{and} \quad u \leftrightarrow d + e^+ + \nu_e)$ Need more down quark than up quark \rightarrow introduce different chemical potential: μ_{up} and μ_{down} .

Charge neutrality (and β -equilibrium) $\frac{2}{3}n_u - \frac{1}{3}n_d - n_e = 0 \quad (\text{and} \quad u \leftrightarrow d + e^+ + \nu_e)$ Need more down quark than up quark \rightarrow introduce different chemical potential: μ_{up} and μ_{down} .

• Stress on 2SC pairing controlled by $\mu_Q = \mu_{up} - \mu_{down}$.

Charge neutrality (and β -equilibrium) $\frac{2}{3}n_u - \frac{1}{3}n_d - n_e = 0 \quad (\text{and} \quad u \leftrightarrow d + e^+ + \nu_e)$ Need more down quark than up quark \rightarrow introduce different chemical potential: μ_{up} and μ_{down} .

- Stress on 2SC pairing controlled by $\mu_Q = \mu_{up} \mu_{down}$.
- Also color neutrality $n_r = n_b = n_q \rightarrow \text{not a problem for 2SC}$.

Charge neutrality (and β -equilibrium)

$$\frac{2}{3}n_u - \frac{1}{3}n_d - n_e = 0 \quad (\text{and} \quad u \leftrightarrow d + e^+ + \nu_e)$$

Need more down quark than up quark \rightarrow introduce different chemical potential: $\mu_{\rm up}$ and $\mu_{\rm down}.$

- Stress on 2SC pairing controlled by $\mu_Q = \mu_{up} \mu_{down}$.
- Also color neutrality $n_r = n_b = n_g \rightarrow \text{not a problem for 2SC}$.

Next: preliminary results in meanfield at T = 1 MeV.

Neutral Matter and First Order Transition

Neutral Matter and First Order Transition

- Density of neutral matter: inside a first order region.
- Suggest the presence of a mixed phase: normal quark matter + 2SC phase.

Mixed Equation of State

Neutral equation of state: right amount of normal quark matter and 2SC phase to reach neutrality.

Summary and Outlook

- Quark-meson-diquark model: model chiral transition and 2SC color superconducting phase.
- FRG resolution faces two problems:
 - Diquarks couple to μ : cannot flow from symmetry restored phase to symmetry broken phase.
 - Divergence at the Fermi-surface: possible resolution with Fermi-surface regulator.
- Negative entropy after the chiral transition: better with diquarks at mean-field level.
- Neutrality condition suggest the presence of a mixed phase: normal quark matter and 2SC phase.

Backup Slides

Full Flow Equation

$$\partial_t U_k = \frac{k^5}{12\pi^2} \Biggl\{ \frac{3}{\epsilon_\pi} \coth \frac{\epsilon_\pi}{2T} + \frac{2}{\epsilon_{\Delta,0}} \left[\coth \frac{\epsilon_{\Delta,0} - 2\mu}{2T} + \coth \frac{\epsilon_{\Delta,0} + 2\mu}{2T} \right] \\ + \sum_{i=1}^3 \frac{\alpha_2 z_i^4 - \alpha_1 z_i^2 + \alpha_0}{(z_i^2 - z_{i+1}^2)(z_i^2 - z_{i+2}^2)} \frac{1}{z_i} \coth \frac{z_i}{2T} \Biggr\} \\ - \frac{k^5}{3\pi^2} \Biggl\{ \frac{2}{\epsilon_k} \left[\frac{E_k^+}{E_\Delta^+} \tanh \frac{E_\Delta^-}{2T} + \frac{E_k^-}{E_\Delta^-} \tanh \frac{E_\Delta^-}{2T} \right] \\ + \frac{1}{\epsilon_k} \left[\tanh \frac{\epsilon_k^+}{2T} + \tanh \frac{\epsilon_k^-}{2T} \right] \Biggr\}$$

with

$$\epsilon_k^{\pm} = \sqrt{k^2 + g_{\phi}^2 \rho^2} \pm \mu = \epsilon_k \pm \mu \qquad \qquad E_{\pi} = \sqrt{k^2 + 2U_{k,\rho}}$$
$$E_{\Delta}^{\pm} = \sqrt{(\epsilon_k \pm \mu)^2 + g_{\Delta}^2 d^2} \qquad \qquad \epsilon_{\Delta,0} = \sqrt{k^2 + 2U_{k,d}}$$

Chiral and diquark condensates

Mixed Phase

