Quark matter in Neutron Stars

Bernd-Jochen Schaefer

JUSTUS-LIEBIG-UNIVERSITAT GIESSEN

September 12th, 2023

EMMI Workshop

Functional Methods in Strongly Correlated Systems (FUNSCS2023)

Hirschegg, Kleinwalsertal, Austria, September 10 - September 15, 2023

agenda

- Hybrid and quark star matter based on a nonperturbative equation of state
 Konstantin Otto (Giessen U.), Micaela Oertel (LUTH, Meudon), Bernd-Jochen Schaefer (Giessen U.)
 Published in: *Phys.Rev.D* 101 (2020) 10, 103021 e-Print: 1910.11929 [hep-ph]
- Nonperturbative quark matter equations of state with vector interactions
 Konstantin Otto (Giessen U.), Micaela Oertel (LUTH, Meudon), Bernd-Jochen Schaefer (Giessen U.)
 Published in: *Eur.Phys.J.ST* 229 (2020) 22-23, 3629-3649 e-Print: 2007.07394 [hep-ph]
 - Regulator scheme dependence of the chiral phase transition at high densities Konstantin Otto (Giessen U.), Christopher Busch (Giessen U.), Bernd-Jochen Schaefer (Giessen U.) Published in: *Phys.Rev.D* 106 (2022) 9, 094018 • e-Print: 2206.13067 [hep-ph]

conjectured QCD phase structure

usual assumptions: equilibrium, homogeneous phases, infinite volume,

conjectured QCD phase structure

cold dense QCD matter: only effective low-energy realisation of QCD: e.g. (P)QM models

ultimate goal: microscopic description of EoS guided by QCD first principle

EoS for dense matter

experimental facts

transition from hadronic to quark matter

12.9.2023 | B.-J. Schaefer (Uni Giessen) | Quark matter in Neutron Stars

conflicting constraints on EoS

conflicting constraints on EoS

unsolved puzzles / open issues

Further constraints:causalitycharge neutrality: $n_p = n_e + n_\mu$ β -equilibrium: $\mu_n = \mu_p + \mu_e$

simplification:

→ electrons and muons as free Fermi gas in EoS

General problems (physical theory input required):

→ hyperon puzzle onset of strangeness in hadronic phase or quark phase
 → soften EoS

[Djapo, BJS, Wambach 2010]

→ masquerade problem	many EoS look similar -> similar M-R relation	
	increasing #dof soften EoS,	
	repulsive interactions stiffen EoS	[Alvarez-Castillo, Blaschke 2014]

Functional Renormalization Group

Wetterich Equation (average effective action) shape function conditions: $R_k(p^2) = p^2 r(p^2/k^2)$ $t = \ln(k/\Lambda)$ $\partial_t \Gamma_k[\phi] = \frac{1}{2} \operatorname{Tr} \partial_t R_k \left(\frac{1}{\Gamma_t^{(2)} + R_k} \right)$ $\lim_{p^2/k^2 \to \infty} R_k(p^2) = 0$ $\Gamma_k^{(2)} = \frac{\delta^2 \Gamma_k}{\delta \phi \delta \phi}$ • $\lim_{p^2/k^2 \to 0} R_k(p^2) > 0 \ (=k^2)$ $k\partial_k\Gamma_k[\phi]\sim \frac{1}{2}$ R_k regulators $\lim_{k \to \infty} R_k(p^2) \to \infty$ [Wetterich 1993] Γ_{Λ} Ansatz effective action Quark-Meson truncation in LPA (LO derivative expansion) $\partial_t \Gamma^{\mathrm{trunc}}$ $\Gamma_k = \int d^4x \bar{q} [i\gamma_\mu \partial^\mu - g(\sigma + i\vec{\tau}\vec{\pi}\gamma_5)]q + \frac{1}{2}(\partial_\mu\sigma)^2 + \frac{1}{2}(\partial_\mu\vec{\pi})^2 + V_k(\phi^2)$ $\mathbf{R_k}$ $V_{k=\Lambda}(\phi^2) = \frac{\lambda}{4}(\sigma^2 + \vec{\pi}^2 - v^2)^2 - c\sigma$ arbitrary potential Γ^{trunc}

12.9.2023 | B.-J. Schaefer (Uni Giessen) | Quark matter in Neutron Stars

Impact of fluctuations on EoS

[Otto, Oertel, BJS 2020]

Hybrid star construction possible? - yes

[Otto, Oertel, BJS 2020]

 $2 M_{\odot}$ limit violated for N_f= 2+1

can a repulsive vector interaction remedy this behavior?

vector mesons & the FRG EoS

[Otto, Oertel, BJS 2020]

[Rennecke 2015] [Pereira, Stiele, Costa 2020]

Yukawa type interaction of temporal component and mean-field potential

$$\Gamma_{\rm vec} = \int_{x} \left[\frac{g_{\nu}}{2} \ \overline{q} \ \gamma_0 \ {\rm diag}_{\rm f}(\omega, \omega, \sqrt{2}\phi) \ q - \frac{1}{2} \left(m_{\omega}^2 \omega^2 + m_{\phi}^2 \phi^2 \right) \right]$$

• effectively shifts the chemical potentials:

500

Mass-Radius relations

[Otto, Oertel, BJS 2020]

→ including strange quarks: finite vector coupling is needed to achieve 2M_☉ limit

→ at the same time: larger vector coupling lead to smaller quark cores!

Mass-Radius relations

[Otto, Oertel, BJS 2020]

[Mire, BJS ... next talk]

→ including strange quarks: finite vector coupling is needed to achieve 2M_☉ limit

→ at the same time: larger vector coupling lead to smaller quark cores!

so far so good ... BUT

back-bending / negative entropy density

12.9.2023 | B.-J. Schaefer (Uni Giessen) | Quark matter in Neutron Stars

back-bending / negative entropy density

back-bending / negative entropy density

[R-A Tripolt, BJS, L von Smekal, J Wambach 2018]

• Phase diagram quark-meson model

- → Regulator scheme dependence?
 less pronounced when more channels are included
 e.g. pairing channel
 s. next talk by Ugo Mire
- fermionic regulator

$$R_k^F(p,\mu) = R_k^F(\tilde{p},0) \qquad \tilde{p} = \left(\begin{array}{c} p_0 + \mathrm{i}\mu\\ \vec{p} \end{array}\right)$$

 Γ_{Λ}

rtrunc

 $\partial_{\mathbf{t}} \mathbf{\Gamma}^{\mathrm{trunc}}$

shift required to preserve **Silver Blaze** property (T=0) (necessary but not sufficient)

relative shift in the cutoff-scales
 between bosonic & fermionic regulator
 → is needed beyond LPA

e.g. field-dependent Yukawa-coupling

(multi quark-antiquark-meson scatterings)

Chiral transition at low temperature

Chiral transition at low temperature

→ no negative entropy density anymore for Callan-Symanzik mass-like regulator

EoS from QCD

• QCD procedure: start @O(100 GeV) (deep high-energy perturbative region)

[Braun et al. 2012++]

$$S = \int \mathrm{d}^4 x \left\{ \frac{1}{4} F^a_{\mu\nu} F^a_{\mu\nu} + \bar{\psi} \left(\mathrm{i}\partial \!\!\!/ + \bar{g} A \!\!\!/ + \mathrm{i}\gamma_0 \mu \right) \psi \right\}$$

- quark-gluon vertex

 many quark self-interaction channels
- dynamical hadronisation:

4-quark correlators → bound states /resonances

EoS from QCD

• QCD procedure: start @O(100 GeV) (deep high-energy perturbative region)

[Braun et al. 2012++]

$$S = \int d^4x \left\{ \frac{1}{4} F^a_{\mu\nu} F^a_{\mu\nu} + \bar{\psi} \left(i\partial \!\!\!/ + \bar{g} A + i\gamma_0 \mu \right) \psi \right\}$$

$$\partial_t$$
 = λ + g + g

symmetry breaking → condensates

- → onset Landau-pole-type behavior $\lambda \sim 1/m$
- → Ginzburg-Landau effective potential

Quark-meson-diquark truncation

EoS from QCD

• QCD procedure: start @O(100 GeV) (deep high-energy perturbative region)

[Braun et al. 2012++]

Summary

Summary

3. in LPA no back-bending / negative entropy density for CS mass-like regulators

CS type regulators closer to

poles compared to flat regulator

→ (vacuum) flows numerically harder

