

"TPC IN GLAD" WG REPORT

R³B Collaboration Meeting, Mainz, November 2023

Hector Alvarez Pol, Yassid Ayad, **Alexandru Enciu, Meytal Duer, Liancheng Ji**, Bastian Loeher, Alexandre Obertelli, Simone Velardita

With support from Julien Taieb and Piotr Gasik, Joerg Hehner (GSI)

TECHNISCHE

UNIVERSITÄT DARMSTADT

STARTING POINT

The TPC

+ plastic wall: built, validated

TECHNISCHE UNIVERSITÄT DARMSTADT LASER SYSTEM

Testing the micromirrors

Profile of primary laser beam

Profile reflected by micro-mirror

TECHNISCHE

UNIVERSITÄT DARMSTADT

51-*um*

w/ micromirror

LASER SYSTEM

Micromirror bundles

STAR TPC Micromirror bundle <image>

- Bundles provided by STAR for 203/2024 tests
 - HYDRA bundles to be built in 2024
 - All materials purchased and received

• System of 3 beam spliters, 15% of primary beam

TECHNISCHE

UNIVERSITÄT DARMSTADT LASER SYSTEM

Source validation at GSI (Oct.)

- 1 ASAD FE board (256 channels)
- Fe, Am, Sr sources through Mylar window
- Uncorrelated trigger (no drift information)

Installation at TUDa (Oct., Nov.)

9

LASER MEASUREMENTS

Settings

- Full laser power (4 W), 9 mJ/pulse, 20 Hz
- 7 ns pulse width
- Drift electric field: 170 V/cm
- Amplification(gain): 10k
- Test gas mixture: 92% Ar + 8% CO₂

Raw waveforms

Integration time: 232 ns Time bins: 40 ns ADC range: 120 fC (12 bits)

After noise subtraction

LASER MEASUREMENTS

FEE and mapping

- 1024 electronics channels for 5000 pads
- Most channels connected to 5 or 6 pads (multiplexing)
- Multiplexing boards between TPC and FEE

LASER MEASUREMENTS

First laser track event (1 ASAD)

Reconstructed track from the laser

Case of several tracks

TRACKING FIBER DETECTORS

Configuration

TECHNISCHE UNIVERSITÄT DARMSTADT

Fibers outside GLAD (FB30-33): new configuration

- Only x direction, side-by-side with a gap for the beam (proposed by Michael Heil)
- ³He acceptance + efficiency: 60.9% (GEANT4 simulations)

Fibers inside GLAD: to be built

Full simulations performed to validate specifications (see next slides)

- 2 (x,y) 13x13 cm² for ³He tracking
- 1 (x,y) in front of target for beam positiom

³He from hypertriton decay

Fibers, vertex reconstruction

Simulating two possibilities: (i) one layer: S = 0.1 cm thick (ii) 3 layers: S = 0.05 cm thick

- ³He from hypertriton decay
- Pion momentum smeared with 1% at the entrance to the TPC
- Merging with pion simulations ongoing: still need to include GLAD field map in Genfit

Fibers: invariant mass resolution

Black = one layer 0.1 cm Color = 3 layers 0.05 cm

M(³H)=2992.14 MeV

Decision: 3 layers: S = 0.05 cm thick

Development in-GLAD fibers

- 13x13 cm²: 3x0.05 cm layers (C. Caesar, D. Savran)
- 128-element MPPC arrays
 - → 14 arrays ordered (expected in Dec. 2023)
- Readout electronics: FaRICH (384 channels per system) + trb3sc
- Rigid-flexible PCB adapter (ordered)
- Prototype 1/2 fiber-plane detector:
 - → 2 MPPC arrays from C. Caesar
 - → 1 FaRICH system ordered (available at the GSI electronics lab.)
 - → PCB ordered
 - Continuation the GLAD-laser measurement

Summary

- HYDRA detector (TPC and plastic) built and first validation in laboratory
- Laser system works

This week

- All channels (4 ASAD) connected and laser data
- Tracking algorithm

Next week

- Packing and move to GSI
- Installation from November 16, Week of Nov. 17-24: measurement in GLAD (see wiki)

Parasitic beam time in February 2024

• Reduced scope if no VMM3 FE

Experiment in February 2025

- Fiber detectors (inside GLAD)
- VMM3 FE implementation, validation (laser at TUDa + in-beam in a location still to be defined)
- R3B DAQ (VMM3 / TRB3)
- Ion-back flow measurements and potential optimization of TPC settings