$R^{3} B$ Collaboration Meeting

S522 Experiment status update
M. Xarepe and E.Lorenz for the s522 group

Mainz 9th Nov 2023

O What are SRCs?

High relative momentum and low centre of mass (c.m.) momentum pairs;

- mainly proton-neutron (pn) pairs;
- pp/pn ratio does not change with A;
- The fraction of high momentum protons increases with N / Z.

R.Saubedi,Science, Vol 320, (2008)

Adapted from M. Duer et al. (CLAS Collaboration), Nature, 560:617, 2018

Motivation and goals

Mokivations R3B Experiment

- Existing trend based on a few points;
- behaviour can depend on shell structure (open/closed shell effects);
- mass and N / Z excess cannot be disentangled with stable nuclei.
- New measurement at $\mathrm{N} / \mathrm{Z}=1.67\left({ }^{16} \mathrm{C}\right)$, above the largest available N/Z and at a much smaller mass.

Adapted from M. Duer et al. (CLAS Collaboration), Nature, 560:617, 2018.
o Experiment run in May 2022;
o Calibration of the detector completed;
o Alignment of the detectors with MDF tracking; $O(p, 2 p)$ analysis and $\mathbf{Q E}$ events selection.

($R^{3} B$ Experimental Set-up

4

(p,2p): reaction vertex

($p, 2 p$) VERTEX reconstruction

Challenges

- High beam energy and intensity;
- High background and noise level (delta electrons and baseline fluctuations);
- Low proton energy deposited.
\checkmark Minimum distance between all possible combinations of FOOT tracks from the left arm and right arm;
\checkmark Matching with CALIFA angles;
\checkmark MWPC tracks projection at the z of the vertex.

O pp Opening angle Vertex

Opening Angle

* In-plane Opening Angle between the two scattered protons;
* Selection of ${ }^{11} B$ fragment;
pp angle correlations

O Fragment analysis: MDF Tracking

12C Fragments PID

Mullti-Dimensional Fit (MDF) with In-beam FOOT

* Input (x, y, z) of the in-beam foot positions (inside vacuum chamber);
* MDF Functions relative to the in-beam FOOT position;
* Track selection problem due to high multiplicity;
* Match of MWPC tracks with in-beam FOOT ones;
* Alignment derived with in-beam FOOT MDF tracking.

Mulki-Dimensional Fit (MDF) with FOOT Verkex

* Input (x, y, z) of the vertex point;
* MDF Functions relative to the vertex position;
* No conditions for in-beam FOOT, detectors not considered for MDF tracking;
* Same alignment derived with in-beam FOOT MDF tracking.

Quasi-Elastic event identification CALIFA

Missing mass vs Missing momenkum
${ }^{12} C(p, 2 p)$

$$
\begin{aligned}
& \text { * (p,2p) selection; } \\
& \text { * } 2 \text { hits in califa; } \\
& * \text { Selection with }|u|>0.65 \mathrm{GeV}^{2} \& \& \\
& \quad|t|>0.65 \mathrm{GeV}^{2} .
\end{aligned}
$$

Califa open issues:

- punch through vs stopped protons ID
- resolution total energy.

Quasi-Elastic event identification CALIFA

Missing mass vs Missing momenkum

Missing mass vs Missing momentum

- The ${ }^{11} B$ detection is shown to select the QE part of the reaction;
- Similar to BM@N (JINR) experiment.

```
* No selection of }\mp@subsup{}{}{11}B\mathrm{ fragment;
* (p,2p) reconstructed with
FOOT detectors;
```


* Selection of ${ }^{11} B$ fragment;
* ($p, 2 p$) reconstructed with FOOT detectors;

Missing momentum Vertex

* Missing momentum derived from 2 scattered protons (arm FOOT):

$$
P_{\text {miss }}=p_{1}+p_{2}-p_{\text {target }}
$$

* Selection of ${ }^{11} B$ fragment;
* Selection with $0.7<M_{m i s s}^{2}\left[G e V^{2} / c^{4}\right]$ <1.2.

Missing momentum In beam FOOT

* Missing momentum derived from 2 scattered protons (CALIFA):

$$
P_{\text {miss }}=p_{1}+p_{2}-p_{\text {target }}
$$

* Selection of ${ }^{11} B$ fragment;
* Selection with $|u|>0.65 G e V^{2} \& \&$
$|t|>0.65 \mathrm{GeV}^{2}$;
* Selection with $0.7<M_{\text {miss }}^{2}\left[G e V^{2} / c^{4}\right]<1.2$

* Missing momentum derived from MDF tracking usingln-beam FOOT:
$P_{11 B}$ from MDF.
* Selection of ${ }^{11} B$ fragment;
* Selection with $|u|>0.65 G e V^{2} \& \&$
$|t|>0.65 \mathrm{GeV}^{2}$.
* Selection with $0.7<M_{m i s s}^{2}\left[G e V^{2} / c^{4}\right]<1.2$

Distribution of the cosine of the opening angle between the missing and fragment momentum in the plane transverse to the beam

* Selection of ${ }^{11} B$ fragment;
* ($\mathrm{p}, 2 \mathrm{p}$) reconstructed with FOOT detectors;
* Selection with $0.7<M_{m i s s}^{2}\left[G e V^{2} / c^{4}\right]<1.2$.
* Selection of ${ }^{11} B$ fragment;
* ($\mathrm{p}, 2 \mathrm{p}$) reconstructed with CALIFA detectors;
* Selection with $0.7<M_{m i s s}^{2}\left[G e V^{2} / c^{4}\right]<1.2$.

Quasi-Elastic event identification

Missing momentum with QE selection

```
* Selection of }\mp@subsup{}{}{11}B\mathrm{ fragment;
* (p,2p) reconstructed with FOOT detectors;
* Selection with 0.7<\mp@subsup{M}{miss}{2}[GeV}\mp@subsup{V}{}{2}/\mp@subsup{c}{}{4}]<1.2 an
    Selection with |u|>0.65GeV每&&
    |t > > 0.65GeV 2
```

* Selection of ${ }^{11} B$ fragment;
* (p,2p) reconstructed with CALIFA detectors;
* Selection with $0.7<M_{\text {miss }}^{2}\left[G e V^{2} / c^{4}\right]<1.2$ and Selection with $|u|>0.65 \mathrm{GeV}^{2} \& \&$ $|t|>0.65 \mathrm{GeV}^{2}$.

Quasi-Elastic event identification

Missing momenkum with QE selection CALIFA
simulation
Data, $p, 2 p$ with QE

($p, 2 p$) FOOT reconstruction efficiency

Estimate of the ($p, 2 p$) vertex reconstruction efficiency using arm FOOT:
1- Compute the number of $(p, 2 p)$ in CALIFA considering the angular range covered by FOOT:
—> 1058 ($p, 2 p$) events;
2- Compute the number of ($p, 2 p$) of arm FOOT with CALIFA conditions;
$\rightarrow 61(p, 2 p)$ events without the requirement to have a track in the in-beam FOOT;
$\longrightarrow 27(p, 2 p)$ events with the requirement to have a track in the in-beam FOOT;

Reconstruction efficiency of FOOT wrt CALIFA —> 5.76% without in-beam FOOT;
Reconstruction efficiency of FOOT wrt CALIFA $\longrightarrow \quad 2.55 \%$ with in-beam FOOT;
140_0001.Imd unpacked with 2 sigma cut on the FOOT ADC Energy

How many fragments at ToFD?

- Problem: Too many combinations of all hits in fragment arm detectors
- Connecting incoming and outgoing only by combinatorics
- Reduce multiplicity by building fragment tracks
- Combine information of all planes
- Use only hits correlated with trigger (~13 ns window)
- Grouping hits that belong to same particle
- by Time, Charge, bar
- Not always all planes active
- Dependent on conditions (over counting)

O Use Fibers to build complete tracks

- List all hits in Fib32 and Fib31/33 correlated with trigger (13 ns window) (= "good" hits)
- Perform linear regression through Fib32, Fib31/33 and ToFD with R^{2} test
- Consider combinations with highest R^{2}
- Take into account not to double count hits
- Highest number of possible tracks given by detector layer with lowest number of "good" hits.
- Save all detector informations ($\mathrm{Q}, \mathrm{TOF}, \mathrm{X}, \mathrm{Y}, \mathrm{TX}, \mathrm{TY}$) and use for MDF

O Use Fibers to build complete tracks

Pending gamma and neutron analysis

Gamma peak time resolution $\mathbf{\sim} \mathbf{1 8 0}$ ps

Summary and perspectives

- QE reaction identified in $12 \mathrm{C}(\mathrm{p}, 2 \mathrm{p}) 11 \mathrm{~B}$ at $1.25 \mathrm{GeV} / \mathrm{u}$
- Open technical issues:
- vertex efficiency;
- FOOT multiplicity;
- CALIFA punch-through ID and energy reconstruction.
- Next:
- QE in 16C setting;
- SRC ID (-> challenges due to high off-shellness) .

Backup

Simple reaction mechanism test (Vertex)

Alpha Angle

$$
\cos \alpha=\frac{\mathbf{p}_{\mathbf{1}} \times \mathbf{p}_{\mathbf{2}}}{\left|p_{1} \times p_{2}\right|} \cdot \frac{\mathbf{P}-\mathbf{Q}}{|P-Q|} \approx 0
$$

* Angle between the normal vector to the ($\mathrm{p}, 2 \mathrm{p}$) reaction plane and ${ }^{12} C-{ }^{11} B$ plane;

$P_{m i s s_{x}}$

© $P_{m i s s_{y}}$

$P_{f r a g_{x}}$

pfrag_x $\{$ p2p \& \& mul_frag $=1 \& \& 11 \mathrm{~B} \& \&$ openAngle $>70 \& \&$ openAngle $<90 \& \&$ alpha $>80 \& \&$ alpha<100

(1) $P_{\text {frag }}^{y}$

Quasi-Elastic event identification CALIFA

Missing mass vs Missing momentum

- The ${ }^{11} B$ detection is shown to select the QE part of the reaction;
- Similar to BM@N (JINR) experiment.

> * No selection of ${ }^{11} B$ fragment;
> * ($p, 2 p)$ reconstructed with CALIFA;

* Selection of ${ }^{11} B$ fragment;
* ($\mathrm{p}, 2 \mathrm{p}$) reconstructed with CALIFA;
* Selection with $|u|>0.65 \mathrm{GeV}^{2} \& \&$ $|t|>0.65 \mathrm{GeV}^{2}$.

Maybe

Checking calibration Maybe

Delta TX0 for 12C

px-pfrag_x \{12C \&\& mul_frag==1\}

Delta TX0 for 11C

px-pfrag_x \{11C \&\& mul_frag==1\}

Delta TX0 for 11B

px-pfrag_x $\{11 B$ \& \& mul_frag==1\}

Delta TX0 for 10B

px-pfrag_x \{10B \&\& mul_frag==1\}

TXO for 11C

px:pfrag_x $\{p 2 p$ \&\& 11C \&\& mul_frag==1\}

TXO for 10B

px:pfrag_x \{p2p \&\& 10B \&\& mul_frag==1\}

TX0 for 11B

px:pfrag_x $\{p 2 p$ \&\& 11B \&\& mul_frag==1\}

