

R3B Collaboration meeting 08.11.2023-10.11.2023 Mainz, Germany

The experiment took place at GSI, April-May, 2021 Analysed reaction: ¹²⁴Sn+¹²C

Beam		Energy [Mev/u]	
primary	secondary	primary	secondary
¹³⁶ Xe	¹²⁴ Sn	1080	904
¹³⁶ Xe	¹²⁴ Sn	620	405
²³⁸ U	¹³⁴ Sn	1000	872
²³⁸ U	¹³² Sn	750	678

55

54

53

52

51

50

49 😸

48

47

46 <u>−</u> 2.45

2.46

2.49

Observation of charge increase (Z=51) •

2.5

1.GT resonance

2.48

E(pspx1) vs AoQ

¹²⁴Sn

2.47

- $2.\Delta$ resonance
- Z=52 contamination

2.481 0

50.2

100

80

60

40

20

2.51

A/q

pZvsAoq

Entries 2522602

Mean x

Mean y

- 1. GT resonance
- One of the components of quasi-elastic NN collision
- Collective excitation
- A spin-isospin flip of a nucleon
- Not included in the theory
- 2. Δ resonance
- Excitation of a nucleon to Δ and its decay to nucleon+pion

 $\pi^{+} + n - > \Delta^{+} - > \pi^{0} + p$ $\pi^{0} + n - > \Delta^{0} - > \pi^{-} + p$

- 1. GT resonance
- One of the components of quasi-elastic NN collision
- Collective excitation
- A spin-isospin flip of a nucleon
- Not included in the theory

2. Δ resonance

- Excitation of a nucleon to Δ and its decay to nucleon+pion

 $\pi^{+} + n - > \Delta^{+} - > \pi^{0} + p$ $\pi^{0} + n - > \Delta^{0} - > \pi^{-} + p$

TECHNISCHE

FIG. 3. Missing-energy spectra obtained from the Pb, Cu, ${}^{12}C$, and proton targets for the single isobaric charge-exchange reactions (${}^{112}Sn$, ${}^{112}Sb$) and (${}^{112}Sn$, ${}^{112}In$). The quasielastic and inelastic contributions are displayed with gray and brown histograms, respectively.

J.L. Rodriguez-Sanchez et al. Phys. Rev. C, 106(1):014618, 2022.

TRACKING ANALYSIS

 \rightarrow Missing signals from 16 channels. this causes a lost of events when using Fi12 in the analysis

 \rightarrow Fi12 was excluded, TofD y position was used

- A/q (¹²⁴Sn) = 2.48
- there is a slight shift in A/q value. It is ~2.473 for $^{124}\mathrm{Sn}$
- A/q (¹²⁴Sb) = 2.43,
- ~30 events is observed at A/Q value around ~2.42
- A/q (¹²³Sb) = 2.41
- ~75 events around ~2.4

MISSING ENERGY ANALYSIS

 \rightarrow One needs to compare the velocities of the same A with different charges. For instance, ^{124}Sn and ^{124}Sb

 \rightarrow Statistics of Z=51 fragments are very low, a rough graphical cut was made around AoQ value corresponding to ^{123}Sb

 $\rightarrow \textit{Frs_beta}$ was used to calculate ToF in a tracking routine

- ToF = FlightPath/Frs_beta/speed_of_light
- β = FlightPath/ToF/speed_of_light

βγ ≈ AoQ/PoQ/AMU

 \rightarrow One can try to extract velocity from <code>FlightPath</code> calculated by mdf, and ToF from LOS-TofD

SIMULATION. INCL ROOT ANALYSIS

¹²⁴Sn+¹²C file produced and provided by Martina #Entries 941268

- A=123 is pronounced one
- Number of total events with Z=51 6892
- Number of events with Z=51 with pions in the final state **3940**
- R~0.57 (~50-50%)

SIMULATION. INCL ROOT ANALYSIS

- E_{beam} 900 AMeV
- E_{beam} 400 AMeV
- \rightarrow Analysis of low beam energy 400AMeV 124Sn runs

INCL data:

 σ_{R} =2482 mb N = 941268 N_{Z=51}= 6892

 $σ_{z=51}$ = ($σ_R$ *N_{Z=51})/N ≈18 mb

Exp data:

σ_{z=51}≈15(1) mb

SIMULATION. INCL ROOT ANALYSIS.CHARGE-EXCHANGE CROSS SECTION

music_charge1

Entries

Std Dev

53

Ζ

Mean

919445

51.32

0.7003

¹²⁴Sn+¹²C (900 AMeV) music_charge music_charge1 music_charge Entries 1104199 Mean 51.09 Std Dev 0.4352 stun 10⁻⁴ counts 10 10⁻⁵ 10 10⁻⁶ 10⁻⁶ 51 51.2 51.4 51.6 51.8 52 52.2 52.4 52.6 51.5 52.5 50.6 50.8 50.5 51 52 Ζ

А	$\sigma_{\Delta Z^{=+1}}[mb]$	$\Delta\sigma_{\Delta Z^{=+1}}[mb]$
¹²⁴ Sn (900 AMeV)	15.06	1.35
¹³² Sn (675 AMeV)	40.79	1.05

PRELIMINARY

TU Darmstadt | IKP | Kudaibergenova Eleonora

¹³²Sn+¹²C (675 AMeV)

SIMULATION. INCL ROOT ANALYSIS. CHARGE-EXCHANGE CROSS SECTION

For 130 Sn, 134 Sn selection a graphical cut was used For 132 Sn selection 2 σ elliptical cut was used

Z=51 ANALYSIS CONCLUSION

- \rightarrow Low statistics in ¹²⁴Sn+¹²C @900AMeV
- \rightarrow Ratio of inelastic and elastic cross sections is 50-50 % starting $\rm E_N{>}600~MeV$
- \rightarrow Ratio of two contribution from INCL simulation is ~1/2
- → Cross section values given by INCL and obtained from data is comparable (18mb and 15mb respectively)
- \rightarrow Analysis of 400AMeV ¹²⁴Sn since at that energy elastic σ_{NP} is higher, GT might be slightly enhanced
- \rightarrow Charge-exchange probabilities of ^{130,132,134}Sn at 675MeV are compatible in the range of error bars
- \rightarrow Try to extract a velocity using FlightPath from mdf tracking and ToF from LOS-TofD

This charge-exchange cross section is necessary to derive the final neutron removal cross section.

THE TOTAL REACTION CROSS SECTION CALCULATION

¹²⁴Sn+¹²C

- Incoming number of ¹²⁴Sn particles I^e, I^t
- \rightarrow elliptical 2 cut on AoQ from FRS and Z from PSP
- Unreacted number of particles (Z=50, N=74) Ue, Ut
- \rightarrow cut on Z=50
- \rightarrow projection on AoQ
- \rightarrow sum of several gaussians with fixed σ
- \rightarrow integral of AoQ=2.48

$$\sigma_R = -\frac{1}{T} \ln \left(\frac{U^t}{I^t} \frac{I^e}{U^e} \right)$$
$$= -\frac{1}{T} \ln \left(\frac{1 - P^t}{1 - P^e} \right)$$

$$\sigma_{\rm R}$$
 = 2405 +/- 42 mb

*no correction is included

THE TOTAL CHARGE-CHANGING CROSS SECTION CALCULATION

¹²⁴Sn+¹²C

- Incoming number of ¹²⁴Sn particles I^e, I^t
- \rightarrow elliptical 2σ cut on AoQ from FRS and Z from PSP
- Unreacted number of particles (Z=50, N=74 || N \neq 74) U^e, U^t
- \rightarrow sum of several gaussians with fixed σ on charge spectra from MUSIC
- \rightarrow integral of Z=50

$$\sigma_{\Delta Z} = -\frac{1}{T} \ln \left[e^{-\sigma_R T} P^e_{\Delta Z} - P^t_{\Delta Z} + 1 \right]$$

$$\sigma_{CE} = -\frac{1}{T} \ln \left[e^{-\sigma_R T} e^{\sigma_{\Delta Z} T} P^e_{CE} - e^{\sigma_{\Delta Z} T} P^t_{CE} + 1 \right]$$

THE TOTAL NEUTRON-REMOVAL CROSS SECTION CALCULATION

¹²⁴Sn+¹²C

- Incoming number of ¹²⁴Sn particles I^e, I^t \rightarrow elliptical 2 σ cut on AoQ from FRS and Z from PSP
- 1. Reacted number of particles (Z=50, N≠74) R^e, R^t
- \rightarrow gate on Z=50
- \rightarrow projection on AoQ
- \rightarrow sum of several gaussians with fixed σ
- \rightarrow integral of A-1, A-2, ...A-n

3. $\sigma_{\Delta N} = \sigma_{R} - \sigma_{\Delta Z}$

TU Darmstadt | IKP | Kudaibergenova Eleonora

COMPARISON WITH THEORY

¹²⁴Sn+¹²C @ 900AMeV

- Two step process, which is not considered in theory
- Proton was removed from the projectile in the result of an interaction with projectile's neutron

*An analysis with 2 g/cm² thickness needs to be done, tracked data are not produced yet

Exp. σ _R [mb]	Theor. σ _R [mb] min.value	Theor. σ _R [mb] max.value	INCL
2405 (42)	2506	2563	2482

SUMMARY & OUTLOOK

Preliminary $\sigma_{\sf R}$, $\sigma_{\Delta Z}$, $\sigma_{\Delta Z=+1}$ were calculated The method how to calculate $\sigma_{\Delta \sf N}$ is discussed

 \rightarrow Continue charge-exchange analysis

 \rightarrow Analyze other tin isotopes at different energies (tracking, cross section calculations)

THANK YOU FOR YOUR ATTENTION!

Thanks to my analysis colleagues:

Ivana Lihtar, Andrea Horvat, Martina Feijoo Fontan, Jose Luis Rodrigues, Igor Gasparic, Valerii Panin, Dominic Rossi

TU Darmstadt | IKP | Kudaibergenova Eleonora

BACKUP SLIDES

TU Darmstadt | IKP | Kudaibergenova Eleonora

CHARGE STATES 49+

 $1.Z=50(psp) \rightarrow Z=50(music) \rightarrow Z=49(glad)$

Ν

tofd

56

55

54

musicZ_vs_tofdZ

musZ vs tofZ

1236429

50.33

50.27

300

Entries

Mean x Mean y

TECHNISCHE UNIVERSITÄT

DARMSTADT

TU Darmstadt | IKP | Kudaibergenova Eleonora

CHARGE STATES 49+

$2.Z=50(psp) \rightarrow Z=49(music) \rightarrow Z=50(glad)$

TECHNISCHE

UNIVERSITÄT

DARMSTADT

CHARGE STATES 49+

CALCULATION. EQUATIONS DERIVATION

