S515 EXPERIMENT ANALYSIS STATUS

R3B Collaboration meeting 08.11.2023-10.11.2023

Mainz, Germany

The experiment took place at GSI, April-May, 2021 Analysed reaction: ${ }^{124} \mathrm{Sn}+{ }^{12} \mathrm{C}$
$E(p s p x 1)$ vs AoQ

Beam		Energy [Mev/u]	
primary	secondary	primary	secondary
${ }^{136} \mathbf{X e}$	${ }^{124}$ Sn	1080	904
${ }^{136} \mathbf{X e}$	${ }^{124}$ Sn	620	405
${ }^{238} \mathrm{U}$	${ }^{134}$ Sn	1000	872
${ }^{238} \mathrm{U}$	${ }^{132}$ Sn	750	678

- 2σ cut on incoming
- Observation of charge increase ($Z=51$)
- 1.GT resonance
- $2 . \Delta$ resonance
- $Z=52$ contamination

1. GT resonance

- One of the components of quasi-elastic NN collision
- Collective excitation
- A spin-isospin flip of a nucleon
- Not included in the theory

2. Δ resonance

- Excitation of a nucleon to Δ and its decay to nucleon+pion

$$
\begin{gathered}
\pi^{+}+n->\Delta^{+}->\pi^{0}+p \\
\pi^{0}+n->\Delta^{0}->\pi^{-}+p
\end{gathered}
$$

TECHNISCHE UNIVERSITA゙T
DARMSTADT

1. GT resonance

112, 124 Sn (@1 GeV/u)

- One of the components of quasi-elastic NN collision
- Collective excitation
- A spin-isospin flip of a nucleon
- Not included in the theory

2. Δ resonance

- Excitation of a nucleon to Δ and its decay to nucleon+pion

$$
\begin{gathered}
\pi^{+}+n->\Delta^{+}->\pi^{0}+p \\
\pi^{0}+n->\Delta^{0}->\pi^{-}+p
\end{gathered}
$$

$\underline{\text { SYSTEMATIC STUDY OF } \Delta(1232) \text { RESONANCE }}$

FIG. 3. Missing-energy spectra obtained from the $\mathrm{Pb}, \mathrm{Cu},{ }^{12} \mathrm{C}$, and proton targets for the single isobaric charge-exchange reactions $\left.{ }^{112} \mathrm{Sn},{ }^{112} \mathrm{Sb}\right)$ and $\left({ }^{112} \mathrm{Sn},{ }^{112} \mathrm{In}\right)$. The quasielastic and inelastic contributions are displayed with gray and brown histograms, respectively
J.L. Rodrıguez-Sanchez et al. Phys. Rev. C, 106(1):014618, 2022.

\rightarrow One needs to compare the velocities of the same A with different charges. For instance, ${ }^{124} \mathrm{~S} n$ and ${ }^{124} \mathrm{Sb}$
\rightarrow Statistics of $Z=51$ fragments are very low, a rough graphical cut was made around AoQ value corresponding to ${ }^{123} \mathrm{Sb}$
\rightarrow Frs_beta was used to calculate ToF in a tracking routine

$$
\begin{aligned}
\text { ToF } & =\text { FlightPath/Frs_beta/speed_of_light } \\
\beta & =\text { FlightPath/ToF/speed_of_light }
\end{aligned}
$$

$$
\beta \gamma \approx A o Q / P o Q / A M U
$$

\rightarrow One can try to extract velocity from FlightPath calculated by mdf, and $\beta \gamma$ ToF from LOS-TofD

S515 EXPERIMENT ANALYSIS STATUS

SIMULATION. INCL ROOT ANALYSIS

${ }^{124} \mathrm{Sn}+{ }^{12} \mathrm{C}$ file produced and provided by Martina \#Entries 941268

- $A=123$ is pronounced one
- Number of total events with $Z=516892$
- Number of events with $Z=51$ with pions in the final state 3940
- $R \sim 0.57$ (~50-50\%)
*Plot by Jose Luis

INCL data:

$$
\begin{aligned}
& \sigma_{\mathrm{R}}=2482 \mathrm{mb} \\
& \mathrm{~N}=941268 \\
& \mathrm{~N}_{\mathrm{Z}=51}=6892 \\
& \sigma_{\mathrm{z}=51}=\left(\sigma_{\mathrm{R}}^{*} \mathrm{~N}_{\mathrm{Z}=51}\right) / \mathrm{N} \approx 18 \mathrm{mb}
\end{aligned}
$$

Exp data:

$$
\sigma_{z=51} \approx 15(1) \mathrm{mb}
$$

$\sigma_{n p(e l)} / \sigma_{n p(\text { tot })}=\sigma_{n p(\text { inel) }} / \sigma_{n p(\text { tot })}$ for $\mathrm{E}_{\mathrm{N}}>600 \mathrm{MeV}$

- $\mathrm{E}_{\text {beam }} 900 \mathrm{AMeV}$
- $\mathrm{E}_{\text {beam }} 400 \mathrm{AMeV}$
\rightarrow Analysis of low beam energy 400AMeV 124Sn runs

${ }^{132} \mathbf{S n}+{ }^{12} \mathbf{C}$ (675 AMeV)

A	$\sigma_{\Delta z=+1}[\mathrm{mb}]$	$\Delta \sigma_{\Delta z=+1}[\mathrm{mb}]$
124 Sn $(900 \mathrm{AMeV})$	15.06	1.35
132 Sn $(675 \mathrm{AMeV})$	40.79	1.05

PRELIMINARY

[^0]

For ${ }^{130} \mathrm{Sn},{ }^{134} \mathrm{Sn}$ selection a graphical cut was used For ${ }^{132}$ Sn selection 2σ elliptical cut was used

S515 EXPERIMENTANALYSIS STATUS

Z=51 ANALYSIS CONCLUSION

\rightarrow Low statistics in ${ }^{124} \mathrm{Sn}+{ }^{12} \mathrm{C} @ 900 \mathrm{AMeV}$
\rightarrow Ratio of inelastic and elastic cross sections is $50-50 \%$ starting $E_{N}>600 \mathrm{MeV}$
\rightarrow Ratio of two contribution from INCL simulation is $\sim 1 / 2$
\rightarrow Cross section values given by INCL and obtained from data is comparable (18mb and 15 mb respectively)
\rightarrow Analysis of $400 \mathrm{AMeV}{ }^{124} \mathrm{Sn}$ since at that energy elastic σ_{NP} is higher, GT might be slightly enhanced
\rightarrow Charge-exchange probabilities of ${ }^{130,132,134} \mathrm{~S}$ n at 675 MeV are compatible in the range of error bars
\rightarrow Try to extract a velocity using FlightPath from mdf tracking and ToF from LOS-TofD

This charge-exchange cross section is necessary to derive the final neutron removal cross section.

THE TOTAL REACTION CROSS SECTION CALCULATION

${ }^{124} S n+{ }^{12} \mathrm{C}$

- Incoming number of ${ }^{124}$ Sn particles $\mathbf{I}^{\mathbf{e}}, \mathrm{I}^{\mathbf{t}}$
\rightarrow elliptical 2σ cut on AoQ from FRS and Z from PSP
- Unreacted number of particles $(Z=50, N=74) \mathbf{U}^{\mathbf{e}}, \mathbf{U}^{\mathbf{t}}$
\rightarrow cut on $\mathrm{Z}=50$
\rightarrow projection on AoQ
\rightarrow sum of several gaussians with fixed σ
\rightarrow integral of $\mathrm{AoQ}=2.48$

$$
\begin{aligned}
\sigma_{R} & =-\frac{1}{T} \ln \left(\frac{U^{t}}{I^{t}} \frac{I^{e}}{U^{e}}\right) \\
& =-\frac{1}{T} \ln \left(\frac{1-P^{t}}{1-P^{e}}\right)
\end{aligned}
$$

$$
\sigma_{R}=2405+/-42 \mathrm{mb}
$$

*no correction is included

QvsAoz
mass

THE TOTAL CHARGE-CHANGING CROSS SECTION CALCULATION

${ }^{124} \mathbf{S n}+{ }^{12} \mathbf{C}$

- Incoming number of ${ }^{124}$ Sn particles $\mathbf{I}^{\mathbf{e}}, \mathrm{I}^{\mathbf{t}}$
\rightarrow elliptical 2σ cut on AoQ from FRS and Z from PSP
- Unreacted number of particles $(Z=50, N=74 \| N \neq 74) \mathbf{U}^{\mathbf{e}}, \mathbf{U}^{\mathbf{t}}$
\rightarrow sum of several gaussians with fixed σ on charge spectra from MUSIC \rightarrow integral of $Z=50$

$$
\sigma_{\Delta Z}=-\frac{1}{T} \ln \left[\mathrm{e}^{-\sigma_{R} T} P_{\Delta Z}^{e}-P_{\Delta Z}^{t}+1\right]
$$

$$
\sigma_{\Delta z}=2162+/-37 \mathrm{mb}
$$

$$
\sigma_{C E}=-\frac{1}{T} \ln \left[\mathrm{e}^{-\sigma_{R} T} \mathrm{e}^{\sigma_{\Delta Z} T} P_{C E}^{e}-\mathrm{e}^{\sigma \Delta Z T} P_{C E}^{t}+1\right]
$$

$$
\sigma_{\Delta z=+1}=15.07+/-1.35 \mathrm{mb}
$$

${ }^{124} \mathbf{S n}+{ }^{12} \mathbf{C}$

- Incoming number of ${ }^{124}$ Sn particles $\mathbf{I}^{\mathbf{e}}, \mathbf{I}^{\mathbf{t}}$
\rightarrow elliptical 2σ cut on AoQ from FRS and Z from PSP

1. Reacted number of particles $(Z=50, N \neq 74) \mathbf{R}^{\mathbf{e}}, \mathbf{R}^{\mathbf{t}}$
\rightarrow gate on $\mathrm{Z}=50$
\rightarrow projection on AoQ
\rightarrow sum of several gaussians with fixed σ
\rightarrow integral of A-1, A-2, ...A-n
2. $R_{\Delta N}=U_{\Delta Z} U_{R}$
$\mathrm{U}_{\Delta \mathrm{Z}}(\mathrm{Z}=50, \mathrm{~N}=74| | \mathrm{N} \neq 74)$
$\mathrm{U}_{\mathrm{R}}(\mathrm{Z}=50, \mathrm{~N}=74)$
3. $\sigma_{\Delta N}=\sigma_{R}-\sigma_{\Delta Z}$

Charge

S515 EXPERIMENT ANALYSIS STATUS

COMPARISON WITH THEORY
TECHNISCHE
UNIVERSITAT
DARMSTADT
${ }^{124}$ Sn+ ${ }^{12} \mathrm{C} @ 900 A M e V$

- Two step process, which is not considered in theory
- Proton was removed from the projectile in the result of an interaction with projectile's neutron
*An analysis with $\mathbf{2} \mathbf{~ g} / \mathbf{c m}^{\mathbf{2}}$ thickness needs to be done, tracked data are not produced yet

Exp. $\sigma_{R}[\mathrm{mb}]$	Theor. $\sigma_{R}[\mathrm{mb}]$ min.value	Theor. $\sigma_{R}[\mathrm{mb}]$ max.value	INCL
$2405(42)$	2506	2563	2482

S515 EXPERIMENT ANALYSIS STATUS

SUMMARY \& OUTLOOK

Preliminary $\sigma_{R}, \sigma_{\Delta z}, \sigma_{\Delta z=+1}$ were calculated
The method how to calculate $\sigma_{\Delta N}$ is discussed
\rightarrow Continue charge-exchange analysis
\rightarrow Analyze other tin isotopes at different energies (tracking, cross section calculations)

THANK YOU FOR YOUR ATTENTION!

Thanks to my analysis colleagues:
Ivana Lihtar, Andrea Horvat, Martina Feijoo Fontan, Jose Luis Rodrigues, Igor Gasparic, Valerii Panin, Dominic Rossi

BACKUP SLIDES

CHARGE STATES 49+

$1 . Z=50(\mathrm{psp}) \rightarrow Z=50$ (music) $\rightarrow Z=49$ (glad)

TECHNISCHE
UNIVERSITAT
DARMSTADT

A fraction of particles leaves the detector with additional \mathbf{n} electrons and enters the magnet with the charge $\mathbf{Q}=\mathbf{Z} \mathbf{- n}$.

S515 EXPERIMENT ANALYSIS STATUS

CHARGE STATES 49+

$2 . Z=50(\mathrm{psp}) \rightarrow Z=49$ (music) $\rightarrow Z=50$ (glad)

musicZ_vs_tofdZ

TECHNISCHE UNIVERSITATT DARMSTADT

515 EXPERIMENTANALYSIS STATUS

CHARGE STATES 49+

TECHNISCHE
UNIVERSITAT
DARMSTADT

$$
\mathrm{N}_{\mathrm{cs}} / \mathrm{N}_{\mathrm{Z}=50} \sim 0.16 \%
$$

[^0]: TU Darmstadt | IKP | Kudaibergenova Eleonora

