

Time-like Baryon Form Factors

Horst Lenske

Institut für Theoretische Physik, JLU Giessen

Recap on Baryon Form Factors

Space-like vs.Time-like Form Factors

Space-like:Scattering

Crossing Symmetry: $e^{-} + N \rightarrow e^{-} + N' \leftrightarrow e^{-} e^{+} \rightarrow N\overline{N}$ a²=s

Time-like Nucleon-Nucleon Electromagnetic Form Factors (EMFF) from Positron-Electron Annihilation

$$\sigma_{e^+e^- \to N\bar{N}} = \frac{4\pi\alpha^2\beta}{3s} C_N(s) \left[\left| G_M^N(q^2) \right|^2 + \frac{2M_N^2}{s} \left| G_E^N(q^2) \right|^2 \right],$$

- Dirac and Pauli Form Factors F₁(s) and F₂(s)
- electric $G_E = F_1 + \tau F_2$ and magnetic $G_M = F_1 + F_2$ form factors ($\tau = s/4m^2$)
- G_E and G_M are complex valued functions of the 4-momentum transfer q^2

...and accordingly for other Octet Baryons, measured e.g. at the FENICE, BaBar, BESIII, and BELLE facilities (and *once upon the time* was planned for PANDA@FAIR).

Time-like Proton EMFF G_{eff}=|G_p|=F_p World Data ~ 2020

PHYS. REV. C 103, 035203 (2021), E. Tomasi-Gustafsson, A. Bianconi, S. Pacetti

The Oscillation Mystery

Vector-Meson t-channel exchange? Constituent Quark Model? QCD/AdS correspondence? Multi-meson intermediate states?

$$F_p^{\text{fit}}(s) = F_{3p}(s) + F_{\text{osc}}[p(s)].$$

$$F_{3p}(s) = \frac{F_0}{\left(1 + \frac{s}{m_a^2}\right) \left(1 - \frac{s}{m_0^2}\right)^2},$$

$$F_{\text{osc}}[p(s)] = Ae^{-Bp} \cos(Cp + D).$$

PRL 114, 232301 (2015), PHYS. REV. C **103**, 035203 (2021), E. Tomasi-Gustafsson, A. Bianconi, S. Pacetti

BESIII $e^+e^- \rightarrow n\overline{n}$ Measurements: Oscillatory Structures in Neutron and Proton EMFF

$$G_{\rm osc}(q^2) = |G| - G_{\rm D}$$
$$G_{\rm D}(q^2) = \frac{A_n}{\left(1 - \frac{q^2}{0.71\,({\rm GeV}^2)}\right)^2}$$

Agenda

- SU(2): Nucleon EMFF in Isospin Representation
- Oscillation Pattern from Interfering Isospin Components
- Clues on Production Mechanism
- SU(3): EMFF of Σ Hyperons
- Summary and Outlook

The Lanzhou-Giessen Approach

Xu Cao^{1,2}, Jian-Ping Dai³, and H. Lenske:

- Phys. Rev. D 105, L071503 (2022)
- Phys. Lett. B 846 (2023) 138192

Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
2University of Chinese Academy of Sciences, Beijing 100049, China
3Department of Physics, Yunnan University, Kunming 650091, China

Probing SU(2) Symmetry in Nucleon EMFF: Isospin Form Factors of the Nucleon

PHYSICAL REVIEW D 105, L071503 (2022)

Timelike nucleon electromagnetic form factors: All about interference of isospin amplitudes

Xu Cao^(b),^{1,2,*} Jian-Ping Dai^(b),^{3,†} and Horst Lenske^{4,‡}

Phenomenology: Modelling the Form Factors

$$\begin{split} \mathbf{G}_{N}^{\text{eff}}(\mathbf{q}) = & | \ \mathbf{G}_{N}(\mathbf{q}) | = \mathbf{G}_{N}^{D}(\mathbf{q}) + \mathbf{G}_{N}^{\text{res}}(\mathbf{q}) \\ & \mathbf{G}_{N}^{D}(\mathbf{q}) = \frac{\mathbf{A}_{N}}{\left(1 + \frac{\mathbf{q}^{2}}{m_{a}^{2}}\right) \left(1 - \frac{\mathbf{q}^{2}}{m_{D}^{2}}\right)^{2}} \\ & \mathbf{G}_{N}^{\text{res}}(\mathbf{q}) = \mathbf{B}_{N} \mathbf{e}^{-b_{N}p(\mathbf{q})} \cos(\mathbf{c}_{N}p(\mathbf{q}) + \mathbf{d}_{N}) \\ & \mathbf{p}(\mathbf{q}) = \mathbf{q}\sqrt{\tau - 1} \end{split}$$

m_a=3.84 GeV, m_D=0.84 Gev, other parameter values see our Phys. Rev. D 105, L071503 (2022)

Momentum Structure of the Empirical Nucleon Form Factors

Modified Dipole plus damped oscillation: $G_{eff}=G_{D}+G_{res}$

Clear Differences in t₃=±1/2 Form Factors Pronounced Isospin Effects!

$$\frac{\sigma_n^D}{\sigma_p^0/C} = \left|\frac{G_n^D}{G_p^D}\right|^2 = 0.40 \pm 0.03$$

-0.1

-0.12

2

2.2

2.4

q [GeV/c]

2.6

2.8

Isospin Interference in Time-like Nucleon Form Factors

Complex Nucleon and Isospin Form Factors

Isoscalar (I=0) and Isovector (I=1) Form Factors:

$$\mathbf{G}_{0,1}(\mathbf{q}) = \frac{1}{2} \left(\mathbf{G}_{p}(\mathbf{q}) \pm \mathbf{G}_{n}(\mathbf{q}) \right)$$

Complex-valued Form Factors:

$$\mathbf{G}_{p,n}(\mathbf{q}) = \mathbf{e}^{i\phi_{p,n}(\mathbf{q})} \left| \mathbf{G}_{p,n}(\mathbf{q}) \right| = \mathbf{G}_0(\mathbf{q}) \pm \mathbf{G}_1(\mathbf{q})$$

$$\mathbf{G}_{0,1}(\mathbf{q}) = \mathbf{e}^{i\phi_{0,1}(\mathbf{q})} \left| \mathbf{G}_{0,1}(\mathbf{q}) \right|$$

...extract information on phases $\phi_{p,n}$ from the oscillation petterns!

H. Lenske, Time-Like, Hirschegg 2024

H. Lenske, Time-Like, Hirschegg 2024

$$|\mathbf{G}_{p}|^{2} + |\mathbf{G}_{n}|^{2} = \mathbf{S}^{2} + \mathbf{D}^{2} = 2(|\mathbf{G}_{0}|^{2} + |\mathbf{G}_{1}|^{2})$$

$$\begin{aligned} \left| \mathbf{G}_{p}(\mathbf{q}) \right| &= \left| \cos(\delta) \mathbf{S}(\mathbf{q}) + i \sin(\delta) \mathbf{D}(\mathbf{q}) \right| = \sqrt{\left[\cos(\delta) \mathbf{S}(\mathbf{q}) \right]^{2} + \left[\sin(\delta) \mathbf{D}(\mathbf{q}) \right]^{2}} \\ \left| \mathbf{G}_{n}(\mathbf{q}) \right| &= \left| \cos(\delta) \mathbf{D}(\mathbf{q}) - i \sin(\delta) \mathbf{S}(\mathbf{q}) \right| = \sqrt{\left[\cos(\delta) \mathbf{D}(\mathbf{q}) \right]^{2} + \left[\sin(\delta) \mathbf{S}(\mathbf{q}) \right]^{2}} \end{aligned}$$

$$\mathbf{G}_{n}(\mathbf{q}) = \mathbf{e}^{i\phi_{n}(\mathbf{q})} \left| \mathbf{G}_{n}(\mathbf{q}) \right| = \mathbf{e}^{i\phi(\mathbf{q})} \left(\mathbf{e}^{i\delta(\mathbf{q})} \left| \mathbf{G}_{0}(\mathbf{q}) \right| - \mathbf{e}^{-i\delta(\mathbf{q})} \left| \mathbf{G}_{1}(\mathbf{q}) \right| \right)$$

$$\phi = \frac{1}{2} (\phi_0 + \phi_1) \quad ; \quad \delta = \frac{1}{2} (\phi_0 - \phi_1) \quad ; \quad S = |G_0| + |G_1| \quad ; \quad D = |G_0| - |G_1|$$

 $\mathbf{G}_{p}(\mathbf{q}) = \mathbf{e}^{i\phi_{p}(\mathbf{q})} \left| \mathbf{G}_{p}(\mathbf{q}) \right| = \mathbf{e}^{i\phi(\mathbf{q})} \left(\mathbf{e}^{i\delta(\mathbf{q})} \left| \mathbf{G}_{0}(\mathbf{q}) \right| + \mathbf{e}^{-i\delta(\mathbf{q})} \left| \mathbf{G}_{1}(\mathbf{q}) \right| \right)$

Effective Nucleon and Isospin Form Factors

The Residual Form Factor

$$G_{p,n} = \frac{I_{p,n}^{D} + I_{p,n}^{\text{rsd}}}{\sqrt{2}} = \frac{I_{1}^{D} \pm I_{0}^{D}}{\sqrt{2}} + \frac{I_{1}^{\text{rsd}} \pm I_{0}^{\text{rsd}}}{\sqrt{2}}.$$

$$\begin{aligned} \mathbf{I}_{N}^{D} &= \sqrt{2} \mathbf{G}_{N}^{D} \mathbf{e}^{i\phi_{N}^{D}} \quad ; \quad \mathbf{I}_{N}^{res} = \left| \mathbf{I}_{N}^{res} \right| \mathbf{e}^{i\phi_{N}^{res}} \\ \left| \mathbf{G}_{N} \right|^{2} &- \left(\mathbf{G}_{N}^{D} \right)^{2} = \mathbf{G}_{N}^{res} \left(2\mathbf{G}_{N}^{D} + \mathbf{G}_{N}^{res} \right) = \frac{1}{2} \left| \mathbf{I}_{N}^{res} \right|^{2} + \sqrt{2} \mathbf{G}_{N}^{D} \left| \mathbf{I}_{N}^{res} \right| \mathbf{Cos}(\phi_{N}^{D} - \phi_{N}^{res}) \end{aligned}$$

...up to order (I^{res}/G^D)²:

$$\mathbf{G}_{N}^{res}(\mathbf{q}) \approx \sqrt{2} | \mathbf{I}_{N}^{res}(\mathbf{q}) | \cos(\phi_{N}^{D}(\mathbf{q}) - \phi_{N}^{res}(\mathbf{q}))$$

Relating Empirical and Isospin Model Parameters ($p(q)=q(\tau-1)^{\frac{1}{2}}$):

$$A_{N}e^{-b_{N}p(q)} = \sqrt{2} |I_{N}^{res}(q)| \quad ; \quad \cos(c_{N}p(q) + d_{N}) = \cos(\phi_{N}^{D}(q) - \phi_{N}^{res}(q))$$

Glimpses on the Physics Behind

Nucleon Form Factors and Isospin

$$\mathsf{R}_{\mathsf{pn}}(\mathsf{q}) = \left| \frac{\mathsf{G}_{\mathsf{p}}(\mathsf{q})}{\mathsf{G}_{\mathsf{n}}(\mathsf{q})} \right| - 1 \approx \left| \frac{\mathsf{I}_{\mathsf{0}}^{\mathsf{res}}(\mathsf{q}) + \mathsf{I}_{\mathsf{1}}^{\mathsf{res}}(\mathsf{q})}{\mathsf{I}_{\mathsf{0}}^{\mathsf{res}}(\mathsf{q}) - \mathsf{I}_{\mathsf{1}}^{\mathsf{res}}(\mathsf{q})} \right|$$

H. Lenske, Time-Like, Hirschegg 2024

Hints on Production Scenario

$$\mathsf{R}_{\mathsf{p}}(\mathsf{q}) = \left| \frac{\mathsf{G}(\mathsf{q})}{\mathsf{G}(\mathsf{q})} \right| - 1 \approx \left| \frac{\mathsf{I}_{0}^{\mathsf{res}}(\mathsf{q}) + \mathsf{I}_{1}^{\mathsf{res}}(\mathsf{q})}{\mathsf{I}_{0}^{\mathsf{res}}(\mathsf{q}) - \mathsf{I}_{1}^{\mathsf{res}}(\mathsf{q})} \right| \approx \frac{2}{3}$$

Two Solutions:

Extension to SU(3) Time-like Hyperon Form Factors

Most Recent BESIII Results on $e^+e^- \rightarrow \Sigma^+ \overline{\Sigma}^-$

•<u>Ablikim et a, 2312.12719</u> [hep-ex]

Hyperon EMFF

- Scarce Data of larger uncertainty, S=-1 only
- Σ -Hyperons: Isospin Triplet \rightarrow I=0,1,2
- e+e- reactions populate only the I=0,1 components
- Three amplitudes and form factors:

Constraints from Σ^{\pm} on Σ^{0} EMF

$$G_{\pm,0} = |G_{\pm,0}| e^{i\phi_{\pm,0}}$$

Using the Isospin Form Factors Relations:

$$4|G_0|^2 = |G_+|^2 + |G_-|^2 - 2|G_+||G_-|\cos(\phi_+ - \phi_-)$$

 \rightarrow Limits on the Σ^0 Form Factor:

$$||G_+| - |G_-|| \le 2|G_0| \le |G_+| + |G_-|$$

Σ Hyperon EMFF World Data Set from BaBar, BELLE, BesIII

Phys. Lett. B 846 (2023) 138192

Summary and Outlook

- Isospin Structure of Proton and Neutron EMFF
- Oscillation Pattern: Interference of Isoscalar and Isovector Components
- EMFF Isospin Structure and Production Mechanism
- First Steps into Octet Sector: EMFF of Σ Hyperons
- Where do the differences in $G_n \leftrightarrow G_p / G_0 \leftrightarrow G_1$ come from?
- In Progress: Quark-Hadron Duality

Supported in part by DFG, grant Le439/16-2