Properties of Four-Quark states from functional methods

Joshua Hoffer

Supervisor: Christian Fischer

Institut für Theoretische Physik Justus-Liebig-Universität Gießen

17. January, 2024

Motivation

- Powerful toolkit to classify <u>conventional</u> hadrons: Quark Model (QM).
- Lot of particles measured that do not fit into the QM picture, i.e., <u>exotic</u> <u>hadrons</u>.
- A few examples:
 - Light scalar mesons: σ , κ , a_0 , f_0
 - Exotic XYZ-states: $X(3872), X(3915), Z_c(3900), Z_c(4430), \psi(4230)$

Tetraquark candidates in the charmonium region

Wolfgang Gradl, BESIII, St Goar 2015

Many unexpected states found by Belle, BARBAR, BES, LHCb, ...

Internal structure??

Related to details of underlying QCD forces between quarks

Functional Framework

- Non-perturbative, fully relativistic framework.
- To compute the properties of bound states, use combination of:
 - DSEs: The QCD quantum equations of motion,

Functional Framework

- Non-perturbative, fully relativistic framework.
- To compute the properties of bound states, use combination of:
 - DSEs: The QCD quantum equations of motion,
 - Hadronic bound state equations: BSEs, Faddeev eqs. .

Eigenvalue equation

$$\lambda(P^2)\,\Gamma^{(n)} = K^{(n)}G^{(n)}\,\Gamma^{(n)}$$

with
$$\lambda(P^2 = -M^2) = 1$$

Joshua Hoffer (ITP - JLU Gießen)

Four-quark BSE

Exact equation:

Kvinikhidze & Khvedelidze, Theor. Math. Phys. 90 (1992) Heupel, Eichmann, Fischer, PLB 718 (2012) 545-549 Eichmann, Fischer, Heupel, PLB 753 (2016) 282-287

Joshua Hoffer (ITP - JLU Gießen)

The Four-quark BSE:

Calculations are done in the *Rainbow-Ladder truncation*:

Maris, Tandy, PRC 60 (1999) Qin et al., PRC 84 (2011)

Lorentz-invariants

Joshua Hoffer (ITP - JLU Gießen)

• Can cast the Lorentz-invariants into multiplets of S₄:

Eichmann, Fischer, Heupel, Phys.Lett.B 753 (2016) 282-287

- One singlet: S₀
- One doublet: $D = \begin{pmatrix} D_1 \\ D_2 \end{pmatrix}$
- Two triples: $T_0, T_1 \rightarrow subleading$
- Dressing functions: $f_i(S_0, D)$
- Poles dynamically generated in D
- "Physical basis": put poles in externally: $f_i(S_0, D) \rightarrow f_i(S_0) \cdot P_{ab} \cdot P_{cd}$

Eichmann, Fischer, Heupel, Santowsky, Wallbott, Few Body Syst. 61 (2020) 4, 38

Physical amplitude

- Structure of the Amplitude Γ is determined according to the quantum numbers of the state in question, the quark content and the physical decay channels.
- Example for the X(3872) $(I(J^{PC}) = 0(1^{++})):$
 - Meson-molecule: $D\bar{D}^*$
 - Hadro-charmonium: $J/\psi \, \omega$
 - Diquark-Antidiquark: S_cA_c

$$\Rightarrow \Gamma = f_{D\bar{D}^*} \cdot \tau_{D\bar{D}^*} + f_{J/\psi\omega} \cdot \tau_{J/\psi\omega} + f_{S_cA_c} \cdot \tau_{S_cA_c}$$

- No assumptions of a dominant substructure needed!
- The internal two-body pole structures introduce decay thresholds into the equation.

Results

Example quark mass evolution for the $0(1^{++})$ state

JH, Eichmann, Fischer, in preparation

Thresholds:Hidden-charmHidden-bottom $DD^*, J/\psi\omega, S_cA_c$ $BB^*, \Upsilon\omega, S_bA_b$

- $M_{1^{++}}^{cq\bar{q}\bar{c}} = 3.89 \pm 0.04 \text{ GeV} \rightarrow X(3872)$
- $M_{1^{++}}^{bq\bar{q}b} = 10.52 \pm 0.06 \text{ GeV} \rightarrow (W_{b1}?)$

Joshua Hoffer (ITP - JLU Gießen)

Hidden-charm mass spectrum

Hidden-bottom mass spectrum

Joshua Hoffer (ITP - JLU Gießen)

Amplitude for the $0(1^{++})$ state

JH, Eichmann, Fischer, in preparation

Physical basis:

Joshua Hoffer (ITP - JLU Gießen)

Dominant subcluster

Results

Mass spectrum

Hidden-flavour ground state masses

	$I(J^{PC})$	Physical components	GS Mass	Exp.
hidden charm	0(0++)	$D\bar{D}$, $J/\psi\omega$, S_cS_c	3.41(2)	_
(cqar qar c)	$0(1^{++})$	$D\bar{D}^*$, $J/\psi\omega$, S_cA_c	3.89(4)	$\chi_{c1}(3872)$
	$1(1^{+-})$	$D\bar{D}^*, J/\psi\pi, S_cA_c$	3.94(2)	$Z_c(3900)$
	$0(1^{})$	$D\bar{D}_1$, $\chi_{c0}\omega$, $J/\psi\sigma$	4.27(2)	$\psi(4230)$
	$0(0^{-+})$	$D\bar{D}_0, \ \chi_{c0}\eta, \ \eta_c f_0(1370)$	4.69(1)	—
hidden bottom	0(0++)	$B\bar{B}, \Upsilon\omega, S_bS_b$	9.77(2)	$(W_{b0}?)$
(bqar qar b)	$0(1^{++})$	$B\bar{B}^*$, $\Upsilon\omega$, S_bA_b	10.52(6)	$(W_{b1}?)$
	$1(1^{+-})$	$B\bar{B}^*, \Upsilon\pi, S_bA_b$	10.40(1)	$Z_b(10610)$
	$0(1^{})$	$B\bar{B}_1, \chi_{b0}\omega, \Upsilon\sigma$	11.01(5)	$\Upsilon(10753)$
H, Eichmann, Fischer, in preparatio	$0(0^{-+})$	$B\bar{B}_0, \chi_{b0}\eta, \eta_b f_0(1370)$	11.16(9)	—
Vallbott, Eichmann, Fischer, Phys.R	ev.D 100 (2019) 1, 0	14033, Wallbott Eichmann, Fischer, Phys.Rev.D 1	02 (2020) 5, 051501	
Joshua Hoffer (TLP - JLU G	(eben)	Properties of Four-Quark states	17. January.	2024 14/16

Open-flavour ground state masses

	$I(J^{PC})$	Physical components	GS Mass	Exp.
open charm	$1(0^{+})$	DD , D^*D^* , A_cA_c	3.39(1)	_
$(ccar{q}ar{q})$	$0(1^{+})$	DD^* , D^*D^* , S_cA_c	3.79(1)	T_{cc}^+
	$1(1^{+})$	DD^*, A_cA_c	4.25(2)	_
open bottom	$1(0^{+})$	BB , B^*B^* , A_bA_b	9.60(1)	-
$(bbar{q}ar{q})$	$0(1^{+})$	BB^* , B^*B^* , S_bA_b	10.14(2)	$(T_{bb}^{+}?)$
	$1(1^{+})$	BB^*, A_bA_b	11.0(2)	/-
				/
Eichmann, Fischer, in preparatio	'n	Lattice QCD, e.g.,		

JH, Eichmann, Fischer, in preparation Wallbott, Eichmann, Fischer, Phys.Rev.D 100 (2019) 1, 014033, Wallbott Eichmann, Fischer, Phys.Rev.D 102 (2020) 5, 051501

Leskovec, Meinel, Pflaumer, Wagner, Phys. Rev. D 100, 014503

Summary:

- DSE/BSE framework is a good tool to qualitatively analyse the charm and bottom four-quark state region.
- New results for the the 1^{--} and 0^{-+} four-quark states.
- Analysed the norm contributions as a means to investigate the internal structure.

<u>Outlook:</u>

- Open-flavour states like
 - $I(1^+)$ and $I(0^+)$ with: $bc\bar{q}\bar{q}$, $cs\bar{q}\bar{q}$, $bs\bar{q}\bar{q}$, $cq\bar{q}\bar{q}$, $bq\bar{q}\bar{q}$, $sq\bar{q}\bar{q}$
 - $\frac{1}{2}(1^+)$ with $bb\bar{q}\bar{s}$
- Include the two-body quarkonium mixing.

Backup slides

Pion BSE

Pion Bethe-Salpeter amplitude is given by:

 $\Gamma_{\text{pion}}(p^2) = E(p^2) \cdot \tau_1(p, P) + F(p^2) \cdot \tau_2(p, P) + G(p^2) \cdot \tau_3(p, P) + H(p^2) \cdot \tau_4(p, P)$

Quark mass evolution 1^{+-}

Joshua Hoffer (ITP - JLU Gießen)

Quark mass evolution 0^{++}

3/8

Quark mass evolution 1^{--}

4/8

Quark mass evolution 0^{-+}

5/8

Eigenvalue curve

Light scalar mesons

The light scalar (0^{++}) mesons is an example where the Quark Model yields wrong predictions:

Light scalar mesons

Pelaez, Phys.Rept. 658 (2016)

2-body approach

• Assume dominant 2-body forces \rightarrow simplify the 4-body BSE to get the **2-body approach**.

Santowsky, Fischer, Eur.Phys.J.C 82 (2022) 4, 313 Santowsky, Eichmann, Fischer, Wallbott, Williams, Phys.Rev.D 102 (2020) 5, 056014

- It is a coupled system of meson-meson and diquark-antidiquark components which interact via quark exchange.
- This approach is close in spirit to an effective field theory description.