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Why three particles on the lattice?

Three-pion decays of K, 7n,w

a1(1260) — pm — 3w

a1(1420) — £,(980)7 — 37

Exotica: T..(3875)" — DD* — DD, ...
Roper resonance: /N and w7 final states

Few-body physics: reactions with the light nuclei
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Lattice vs. infinite volume: observables

@ Infinite volume:
Three-particle bound states; Elastic scattering; Rearrangement reactions; Breakup;
Three-particle resonances; Decay matrix elements (complex): e.g., (mmm|Hw|K)

@ Finite volume:
Two- and three-particle energy levels; Matrix elements between eigenstates (real)

How does one connect these two sets? EFT serves as a bridge!
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“Scattering” in a finite volume

The scattering observables cannot be directly extracted from the amplitudes calculated
on the lattice!

(Periodic) boundary conditions imposed

The spatial size of the box, L, is finite
Assume the temporal size L; > L, L; — o0

. 2
Three-momenta are quantized p = T n, nec Z3

Discrete energy levels: E,.1 — E, = O(L_2)

How does one extract the scattering observables:
phase shifts, cross sections, ...from the measured quantities
on the lattice?
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EFT meets lattice

@ When R < L, well-separated hadrons can be formed, QCD — ChPT

@ When R < L, wave function has asymptotic form — scattering

@ Since p~ 1/L and R ~ 1/m, then from R < L: follows p < m: non-relativistic
EFT (NREFT)

o Polarization effects, caused by creation/annihilation of the particles, are
exponentially small and can be neglected

‘Scale separation: QCD (in a finite volume) = EFT (in a finite vqume)‘
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Three-particle quantization condition

@ Is the three-particle spectrum determined solely in terms of the S-matrix?

K. Polejaeva and AR, 2012: Yes!

@ Three different but equivalent formulations of the three-particle quantization
condition are available

o RFT (Relativistic Field Theory): Hansen & Sharpe, 2014
o NREFT (Non-Relativistic Effective Field Theory): Hammer, Pang & AR, 2017
e FVU (Finite-Volume Unitarity): Mai & Déring, 2017

@ Enables one to extract scattering observables in the three-body sector from the
measured finite-volume spectrum
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Non-relativistic EFT: essentials

@ Propagator:

1 1 1
= — + .
m? —p?  2w(p)(w(p) — p° —ic) = 2w(p)(w(p) + p° — ic)
particle anti— particle

@ The vertices in the Lagrangian conserve particle number:

C D
L = gH(i0e — w)@w)d -+, 68166 + 2. 816 olod0 + -

Co,Do encode short-range physics

@ Dimer: an alternative description of an infinite bubble sum; dummy field in the

path integral
dimer : >O< +>OO< +o = >=<
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The quantization condition (CM frame) (Hammer, Pang & AR, 2017)

HOEAWAVARN (R

Bethe-Salpeter equation

N @Bk
M(p,q; E) = Z(p, q; E) + SW/ G 20k )l E)M(k.q; )

1 ~
Z(p,q;E) = +Ho+--
( ) 2w(p+aq)(w(p) + w(a) + wp+q)— E) °
2-body amplitude: 4W(k*)7'_1(k; E) = k* coto(k™) + %2 - m?
~—

.. 2w 3 _ o =k
Finite volume: p = T n, n € Z>, poles of the scattering matrix = spectrum
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The 3-particle analog of the Lellouch-Liischer formula (F. Miiller & AR, 2020)

o Final-state interactions lead to an irregular L—dependence of the matrix element

B O

@ The non-relativistic Lagrangian
G
L = GHi0—w)@w)d + 7 66160 + -+ KI(i0 — wic) 2w ) K
+ g(KTppop +h.c.) +

o Calculate the decay matrix element in a finite and in the infinite volume, extract g
@ Matrix elements are related through

[(nlHw|K)L| = Ls(L) [(wm; out|Hw | K) oo
~——
depends on pion interactions
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Relativistic invariance in the three-particle sector

@ In the infinite volume, one resorts to the formalism that involves on-mass shell
matrix elements only, in order to avoid ambiguities. The observables in a finite
volume should be directly related to the infinite-volume S-matrix

< Three-dimensional formalism, manifest Lorentz invariance is lost
— Only Lorentz-invariant operators in the Lagrangian?

— Proliferation of the independent couplings that should be extracted from
lattice data in different moving frames

@ In two-particle sector, the problem is solved by dim.reg.+threshold expansion.
Sectors with more particles?
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How does one interpret the relativistic invariance of the QC?

A finite box breaks Lorentz/rotational invariance — only infinite volume
@ Scalar particles, S-wave:

Particle-dimer amplitude : .Z(P,p;@,q) = .#(P',p’;Q',q")
Three-particle amplitude T (p1, p2, p3; p1, G2, G3) = T(p1, P2, P3; P1, G2, G5)

@ Including spins and higher partial waves in the three-dimensional formalism
accomplished albeit technically challenging

@ Enables to describe the data taken in different moving frames by using the
relativistic-invariant three-body force — less independent fitting parameters

@ Methodology: write down the scattering equations in the manifestly
Lorentz-invariant form
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Explicitly Lorentz-invariant three-particle formalism
(F. Miiller, J.-Y. Pang, AR and J.-J. Wu, JHEP 02 (2022) 158)

e Choose “quantization axis’ in direction of an arbitrary unit vector v*, v? =1
@ The Lagrangian:

L = (D) = w20+ ST T (Z e +h)+

@ Here, w, = \/m2 + 92 — (v0)? and OF1#¢ denote the covariant operators,
constructed out of two ¢ fields

@ The propagator:

d4k e—ik(x—y)
OIT#(x)9!(x)[0) = / (2m)* 2w, (k) (wi (k) — (vK) — =)
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Particle-dimer picture

@ Particle-dimer Lagrangian:
L =¢(i(v-9)—w)2w,)o+ T T + (TT [%w +o ]+ h.c.)

e Matching: fy,... < Cp,... < a,r,..., o==1l

@ vH is a unit vector in the direction of the total four-momentum of the
three-particle system
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Particle-dimer picture in the three-particle sector

@ The particle-dimer Lagrangian in the three-particle sector
L= hoTTT¢T¢+

@ Matching: hg,... <> Dg,...

@ Terms with higher derivatives, higher dimer spin and orbital momentum should be
added
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The scattering equation in the infinite volume

EORRNAVARN RN

Bethe-Salpeter equation

3
M(p.) = 2(p.q) + 8 [ Gk 00N — ()2(p.K)r(K — k)M (k.0)
2v/P? . p2
m(P) = k* cot 0(k*) — ik* kK= 4 m

1

Z(p.q) = 2wy (K — p— q)(wv(p) + wo(q) + wo (K — p — q) — (VK) — i€)
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Relativistic invariant QC in the three-body sector
(F. Miiller, J.-Y. Pang, AR and J.-J. Wu, JHEP 02 (2022) 158)

T[_(K - k)

8
Mu(p.q) = Z(p,a) + 13 20N +m” = (vk))Z(p. k)= s Mk, )
k
2VK?2 k*L
7_L(P) = 2 ) do = o
1 -
Z(p,q) = +Ho+--

2wy (K = p— q)(wv(p) + wv(q) + wo(K — p— q) — (VK) — ie

@ Quantization condition:
dete/ =0, g = L32W(p)(53q(87rTL(K —p)) = 2Z(p,q)
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Quantization condition: essentials

@ The solution for the scattering amplitude in the infinite volume is manifestly
relativistic invariant:

M(p,q; K;v)=4(p,q; K'; V)

@ Relativistic invariance is achieved by expressing v* in terms of the external
momenta

a natural choice: v* = K*/V K?

@ Three-body amplitude expressed through particle-dimer amplitude
— relativistic-invariant

@ Analysis of lattice data: two-body interactions as an input: k* cot d(k*) fitted in
the two-particle sector

o Extracting short-range quantities encoded in the three-body couplings l':lo7 e

— should be fitted to the three-particle energies
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Relativistic invariant formalism for the three-particle decays
(F. Miiller, J.-Y. Pang, AR and J.-J.Wu, JHEP 02 (2023) 214)

Applicable to: decays through the weak or electromagnetic interactions;
isospin-breaking decays: pole on the real axis, example: K — 37

@ The Lagrangian is manifestly relativistic invariant
Lk = K'(i(vo) - K)( wy )K

+ WZW (KTGo(AT)((Z—m(w))*®) Tem + hoc.)

@ The effective couplings

G(ar) =60 +cMar+--
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The 3-particle LL factor

The LL formula relates matrix elements in a finite and infinite volume

L3/2(n|Jf(0)[0) = ZA (Ko La) G

(w(ka)m (ko) (ks)| I (0)]0) = Zx K)G"

s (m(k)m (ko) (ks); out|Hw | K)so = La({k})L3/2(n|Hw|K),

@ The factor IL3({k}) depends on the m7, wom interactions and on L, but
not on the couplings that describe the short-range part of the K — 37 amplitude!
@ The derivative couplings emerge at higher orders; decay amplitudes into different
final states mix. The three-particle LL factor becomes a matrix
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LL factor in the K — 37 decays
(J.-Y. Pang, R. Bubna, F. Miiller, AR and J.-J. Wu, arXiv:2312.04391)

Objectives:
@ Provide a numerical implementation of the analytic expressions (lowest order in
the EFT expansion, only S-wave). Include isospin channels explicitly

@ Discuss renormalization and cutoff-independence of the LL factor

@ Apart from the two-body scattering parameters, the LL factor depends on the
three-body force, which should be determined prior to calculating the matrix
element. Is this dependence significant numerically?
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Matching of the parameters of the Lagrangian

@ Two-body sector: S-wave scattering lengths ag, a»
@ Two independent three-body couplings without derivatives:

L = Dy(w'7)3 + Do(nin)(wlm) (7o)

Pi ak Pi qk
o Tree-level matching to ChPT: »; q P; qj
Pk Qi Pk qi

Two independent K — 3m couplings
Lx = Gl(K_];_W07T07T+ + h.c.) + GQ(KIW+7T+7T_ + h.c.)
o At lowest order in EFT expansion, G, = —2G; + O(G2)
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Renormalization and cutoff independence

@ 5 independent particle-dimer couplings but only 2 independent three-particle
couplings at lowest order. Are all observables cutoff-independent after matching

three-particle amplitudes at threshold?

— Matching renders all observables cutoff-independent. Unphysical quantities, in
general, are cutoff-dependent; The running of the particle-dimer coupling
constants is irregular (reminiscent of the log-periodic behavior)

@ The Faddeev eq. for the particle-dimer w.f. is solved, using contour deformation
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LL factor for the K — 3m decays

<<7T+(P1)7T+(pz)7f‘(p3)lK+>> _ <Xco XC2> <g(170)>

(m0(p1)m%(p2) 7t (p3)|KT) Xno Xn2) \g?

Infinite-volume particle-dimer scattering wave functions — X,z

L3/2<I'n,1]K+> . AlO A12 g(l,O)
L32(rn,31KT) )~ \Asg Az) \g3?

Finite-volume particle-dimer wave functions — Aj;
(rtrta=|KT)\ _ (La Les) (L¥2(Tn,1|KT)
(P07 |K*TY ) 7 \ Ly Lz \L32(Tn,3|KT) )

-1
<Lcl Lc3> _ <Xc0 Xcz) <A10 A12>
Lpi Lps Xno Xm2) \Az0 Az
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Cutoff independence of the LL factor

304 © A=15.0M,
A=20.0M,
.
S 0] Vv A=25.0M,
(8}
Re) lnl
= 101 @
-
(]
=
© 0 [63
o
o o Ln3
g —101 @
=) lcl
g =20 0]
_30,
—200 ~100 0 100 200

Real part of LL factor
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Sensitivity towards scattering lengths vs three-body force

301 o (agad) 301 o (TLTH

(1.3af, 1.3a3) (27X, = 2T%)
201 o (0.7a§,1.3a%) 201 ¢ (+4TX, -2TY
o (07a§,0.7a}) O (+4T%, +4TY)
« (1.3a},0.7a%) & (=2T%, +4TY)

P L
o lpy

10

Les
@ Ln3
o0

Les Cg,]

(o]
8 Ln3 o

i)

-10 -10

-20

Imaginary part of LL factor
o

Imaginary part of LL factor
o

-20 &

=30 =30

—200 —100 0 100 200 —200 —100 0 100 200
Real part of LL factor Real part of LL factor

@ 2 x 2 LL factor, corresponding to Kt — nTnt7~ and KT — 70707 decays

@ Sensitive to the values of ag, ap, very little dependence on the three-body force!
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Conclusions

@ In the analysis of lattice data, EFT can be used to systematically relate the finite-
and infinite-volume observables. This facilitates the extraction of scattering
observables from lattice data

@ The crucial point: decoupling of short- and long-range physics

@ The quantization condition and an analog of the LL formula in the three-particle
sector is derived in a manifestly Lorentz-invariant form

@ Decays of KT into three pions: everything ready!

o LL factor worked out explicitly to lowest order; all isospin channels are included

e Renormalization is addressed in detail. Number of independent particle-dimer
three-body couplings exceeds the number of independent three-pion amplitudes.
However, matching renders all observables cutoff-independent

o Very little dependence on the three-body input! At the first stage, matching to the
ChPT amplitude suffices (power counting, away from singular values of couplings)
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Spares
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Higher partial waves, derivative couplings

@ The dimer field with an arbitrary (integer) spin

Tom= D _(c7H)im N ATV MY = = (1,0)

H1pe—r1
HisVi

o (Symmetric) dimer field obeys the constraints
VM'TILLI"',LLZ — 0’ T/,ilfl it — 0

@ Interaction of a dimer with two particles

L= 0T} Tom+ > (T}, Om+h.c)
Im fm
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Two-particle vertices

@ Generalization of the on-shell three-momentum to moving frames:
v = wh —vi(vw), wh = Now?” | wh = viw, + (0" — v¥(vd))

@ The boost A renders the total momentum of the pair P* parallel to v#

NA(v, u)uh = i, oyt = /P2’ P = pl' + Bl (on-shell)

@ The vertices:
f(O f(2)
0 = L g2y (¢WLWL,L¢* Wi oW1, d) +
i (3(¢v‘viv‘vﬁ¢— REORS) — (& — V'V YW1 10— W0m10) ) +

..and so on
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Three-particle force

Z Z TET’ gL/E’ w, m )ng) TflLéL(A’XTvZT)((gLéM(ﬂa m))*¢) Tfm

Iml'm' LL' IM

27" (k, m) = (L(M — m) Lm|IM)D - my(k), " = Njw

@ The three-body force is parameterized by effective couplings
JL’L(A AT, AT) =ho+ hA+ hz(AT + AT)

A=K?>—(3m)*, Ar=P>—(2m)

3-body system 2-body subsystem

@ Number of independent couplings depends on the detailed dynamics of the system!
31/34



The Bethe-Salpeter equation

%glm/7€m = Ze/m/7em —|— Z ZE’m’,Z”m”SK”%E”m”,Em
o

@ The two-body propagator

52(5) = —

1
a0 — 17(s)3 PP(s)I(s)
@ The driving term

A (D (B))” fir (5p) fi(59) Dem (@)
2wy (K — p— aq)(w(p) + wv(q) + w(K — p — q) — vK — i€)

Zl’m/,é”m” (p, q)

+am Y S A (o m) TIA(D 8, ) (is(a,m))

L JM
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Relativistic invariance of the framework

@ Two types of momenta: p = A(v)A(v,u)p and p = A(v)p
o Wigner-Thomas rotation

Ava) = RA(VQY, R=R(Q,v)
@ Lorentz-transformation of the momenta
p— Mva)pa = RA(V)Q'Qp=Rp,  p— Rp
@ Lorentz-transformation of the kernel

Zg/m/7gm(Qp,Qq,QK) Z mm’” Zé’m’”,ﬂm”(pa q, K)(gfsf/)/m(R))*

mlll m/l

— %Z’m’,fm(ﬂpv Qq7 QK) Z ‘@r(rf m’” ‘%[’ " Em”(P7 q, K) (‘@r(rf’)’m(R))* v

m/// m//
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Relativistic invariant three-body QC

det(&/) =0

-1 1
M’m’,@m(py q) = 2W(p)5pq (SZL’m’,Zm(K - P)) E) Zf/m'fm(p’ CI)

@ Even in a finite volume, dimer propagator St does not depend on v#

@ Projection on the irreps of the cubic group and its subgroups can be done in a
standard manner

@ Meaning of the relativistic invariance in a finite volume: Parameterizing the
three-body force in a Lorentz-invariant manner and fitting it to data in different
frames, the finite-volume corrections to the extracted effective couplings will be
exponentially suppressed.
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