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Why three particles on the lattice?

Three-pion decays of K , η, ω

a1(1260) → ρπ → 3π

a1(1420) → f0(980)π → 3π

Exotica: Tcc(3875)
+ → DD∗ → DDπ, . . .

Roper resonance: πN and ππN final states

Few-body physics: reactions with the light nuclei
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Lattice vs. infinite volume: observables

Infinite volume:
Three-particle bound states; Elastic scattering; Rearrangement reactions; Breakup;
Three-particle resonances; Decay matrix elements (complex): e.g., ⟨πππ|HW |K ⟩
Finite volume:
Two- and three-particle energy levels; Matrix elements between eigenstates (real)

How does one connect these two sets? EFT serves as a bridge!
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“Scattering” in a finite volume

The scattering observables cannot be directly extracted from the amplitudes calculated
on the lattice!

a

a

L

a

(Periodic) boundary conditions imposed

The spatial size of the box, L, is finite

Assume the temporal size Lt ≫ L, Lt → ∞
Three-momenta are quantized p =

2π

L
n , n ∈ Z3

Discrete energy levels: En+1 − En = O(L−2)

How does one extract the scattering observables:
phase shifts, cross sections, . . . from the measured quantities

on the lattice?
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EFT meets lattice

Ψ
in

Ψ
out

R

L

When R < L, well-separated hadrons can be formed, QCD → ChPT

When R ≪ L, wave function has asymptotic form → scattering

Since p ∼ 1/L and R ∼ 1/m, then from R ≪ L: follows p ≪ m: non-relativistic
EFT (NREFT)

Polarization effects, caused by creation/annihilation of the particles, are
exponentially small and can be neglected

Scale separation: QCD (in a finite volume) ⇒ EFT (in a finite volume)
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Three-particle quantization condition

Is the three-particle spectrum determined solely in terms of the S-matrix?

K. Polejaeva and AR, 2012: Yes!

Three different but equivalent formulations of the three-particle quantization
condition are available

RFT (Relativistic Field Theory): Hansen & Sharpe, 2014

NREFT (Non-Relativistic Effective Field Theory): Hammer, Pang & AR, 2017

FVU (Finite-Volume Unitarity): Mai & Döring, 2017

Enables one to extract scattering observables in the three-body sector from the
measured finite-volume spectrum
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Non-relativistic EFT: essentials

Propagator:

1

m2 − p2
=

1

2w(p)(w(p)− p0 − iε)︸ ︷︷ ︸
particle

+
1

2w(p)(w(p) + p0 − iε)︸ ︷︷ ︸
anti−particle

The vertices in the Lagrangian conserve particle number:

L = ϕ†(i∂t − w)(2w)ϕ+
C0

4
ϕ†ϕ†ϕϕ+

D0

36
ϕ†ϕ†ϕ†ϕϕϕ+ · · ·︸ ︷︷ ︸

C0,D0 encode short-range physics

Dimer: an alternative description of an infinite bubble sum; dummy field in the
path integral

+ + · · · →dimer :
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The quantization condition (CM frame) (Hammer, Pang & AR, 2017)

= + + +

Bethe-Salpeter equation

M(p,q;E ) = Z (p,q;E ) + 8π

∫ Λ d3k

(2π)32w(k)
Z (p, k;E )τ(k;E )M(k,q;E )

Z (p,q;E ) =
1

2w(p+ q)(w(p) + w(q) + w(p+ q)− E )
+ H̃0 + · · ·

2-body amplitude: 4w(k∗)τ−1(k;E ) = k∗ cot δ(k∗) +

√
s2
4
−m2︸ ︷︷ ︸

=k∗

Finite volume: p =
2π

L
n, n ∈ Z3, poles of the scattering matrix ⇒ spectrum
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The 3-particle analog of the Lellouch-Lüscher formula (F. Müller & AR, 2020)

Final-state interactions lead to an irregular L-dependence of the matrix element

π
+ · · ·

K π

π
π +

K π

π

+
K

π

π

π

The non-relativistic Lagrangian

L = ϕ†(i∂t − w)(2w)ϕ+
C0

4
ϕ†ϕ†ϕϕ+ · · ·+ K †(i∂t − wK )(2wK )K

+ g(K †ϕϕϕ+ h.c.) + · · ·
Calculate the decay matrix element in a finite and in the infinite volume, extract g

Matrix elements are related through

|⟨n|HW |K ⟩L| = L3(L)︸ ︷︷ ︸
depends on pion interactions

|⟨πππ; out|HW |K ⟩∞|
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Relativistic invariance in the three-particle sector

In the infinite volume, one resorts to the formalism that involves on-mass shell
matrix elements only, in order to avoid ambiguities. The observables in a finite
volume should be directly related to the infinite-volume S-matrix

↪→ Three-dimensional formalism, manifest Lorentz invariance is lost

↪→ Only Lorentz-invariant operators in the Lagrangian?

↪→ Proliferation of the independent couplings that should be extracted from
lattice data in different moving frames

In two-particle sector, the problem is solved by dim.reg.+threshold expansion.
Sectors with more particles?
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How does one interpret the relativistic invariance of the QC?

A finite box breaks Lorentz/rotational invariance → only infinite volume

Scalar particles, S-wave:

Particle-dimer amplitude : M (P, p;Q, q) = M (P ′, p′;Q ′, q′)

Three-particle amplitude : T (p1, p2, p3; p1, q2, q3) = T (p′
1, p

′
2, p

′
3; p

′
1, q

′
2, q

′
3)

Including spins and higher partial waves in the three-dimensional formalism
accomplished albeit technically challenging

Enables to describe the data taken in different moving frames by using the
relativistic-invariant three-body force → less independent fitting parameters

Methodology: write down the scattering equations in the manifestly
Lorentz-invariant form
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Explicitly Lorentz-invariant three-particle formalism
(F. Müller, J.-Y. Pang, AR and J.-J. Wu, JHEP 02 (2022) 158)

Choose “quantization axis” in direction of an arbitrary unit vector vµ, v2 = 1

The Lagrangian:

L = ϕ†(i(v∂)− wv )(2wv )ϕ+
∑
ℓ

σℓT
†
µ1···µℓ

Tµ1···µℓ +
1

2

(∑
ℓ

T †
µ1···µℓ

Oµ1···µℓ + h.c.

)
+ · · ·

Here, wv =
√
m2 + ∂2 − (v∂)2 and Oµ1···µℓ denote the covariant operators,

constructed out of two ϕ fields

The propagator:

⟨0|Tϕ(x)ϕ†(x)|0⟩ =
∫

d4k

(2π)4
e−ik(x−y)

2wv (k)(wv (k)− (vk)− iε)
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Particle-dimer picture

Particle-dimer Lagrangian:

L = ϕ†(i(v · ∂)− wv )(2wv )ϕ+ σT †T +

(
T †

[ f0
2
ϕϕ+ · · ·

]
+ h.c.

)

Matching: f0, . . . ↔ C0, . . . ↔ a, r , . . . , σ = ±1.

vµ is a unit vector in the direction of the total four-momentum of the
three-particle system
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Particle-dimer picture in the three-particle sector

→

D0
H0

The particle-dimer Lagrangian in the three-particle sector

L3 = h0T
†Tϕ†ϕ+ · · ·

Matching: h0, . . . ↔ D0, . . .

Terms with higher derivatives, higher dimer spin and orbital momentum should be
added
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The scattering equation in the infinite volume

= + + +

Bethe-Salpeter equation

M(p, q) = Z (p, q) + 8π

∫
d3k⊥

(2π)32wv (k)
θ(Λ2 +m2 − (vk)2)Z (p, k)τ(K − k)M(k , q)

τ(P) =
2
√
P2

k∗ cot δ(k∗)− ik∗ k∗ =

√
P2

4
−m2

Z (p, q) =
1

2wv (K − p − q)(wv (p) + wv (q) + wv (K − p − q)− (vK )− iε)
+ H̃0 + · · ·
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Relativistic invariant QC in the three-body sector
(F. Müller, J.-Y. Pang, AR and J.-J. Wu, JHEP 02 (2022) 158)

ML(p, q) = Z (p, q) +
8π

L3

∑
k

θ(Λ2 +m2 − (vk)2)Z (p, k)
τL(K − k)

2w(k)
ML(k, q)

τL(P) =
2
√
K 2

k∗ cot δ(k∗)− 2√
πLγ

ZP
00(1; q

2
0)

, q0 =
k∗L

2π

Z (p, q) =
1

2wv (K − p − q)(wv (p) + wv (q) + wv (K − p − q)− (vK )− iε
+ H̃0 + · · ·

Quantization condition:

detA = 0 , Apq = L32w(p)δ3pq(8πτL(K − p))−1 − Z (p, q)
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Quantization condition: essentials

The solution for the scattering amplitude in the infinite volume is manifestly
relativistic invariant:

M (p, q;K ; v) = M (p′, q′;K ′; v ′)

Relativistic invariance is achieved by expressing vµ in terms of the external
momenta

a natural choice: vµ = Kµ/
√
K 2

Three-body amplitude expressed through particle-dimer amplitude
→ relativistic-invariant

Analysis of lattice data: two-body interactions as an input: k∗ cot δ(k∗) fitted in
the two-particle sector

Extracting short-range quantities encoded in the three-body couplings H̃0, . . .
– should be fitted to the three-particle energies
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Relativistic invariant formalism for the three-particle decays
(F. Müller, J.-Y. Pang, AR and J.-J.Wu, JHEP 02 (2023) 214)

Applicable to: decays through the weak or electromagnetic interactions;
isospin-breaking decays: pole on the real axis, example: K → 3π

The Lagrangian is manifestly relativistic invariant

LK = K †(i(v∂)− wK
v )(2wK

v )K

+
√
4π

∑
ℓm

(−1)ℓ√
2ℓ+ 1

(
K †Gℓ(∆T )

(
(Yℓ,−m(w))∗ϕ

)
Tℓm + h.c.

)
The effective couplings

Gℓ(∆T ) = G
(0)
ℓ + G

(1)
ℓ ∆T + · · ·
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The 3-particle LL factor

The LL formula relates matrix elements in a finite and infinite volume

L3/2α ⟨n|J†K (0)|0⟩ =
∑
ℓ,i

A
(i)
ℓ (Kα, Lα)G

(i)
ℓ

⟨π(k1)π(k2)π(k3)|J†K (0)|0⟩ =
∑
ℓ,i

X
(i)
ℓ (K )G

(i)
ℓ

↪→ ⟨π(k1)π(k2)π(k3); out|HW |K ⟩∞ = L3({k})L3/2⟨n|HW |K ⟩L

The factor L3({k}) depends on the ππ, πππ interactions and on L, but
not on the couplings that describe the short-range part of the K → 3π amplitude!

The derivative couplings emerge at higher orders; decay amplitudes into different
final states mix. The three-particle LL factor becomes a matrix

20 / 34



LL factor in the K → 3π decays
(J.-Y. Pang, R. Bubna, F. Müller, AR and J.-J. Wu, arXiv:2312.04391)

Objectives:

Provide a numerical implementation of the analytic expressions (lowest order in
the EFT expansion, only S-wave). Include isospin channels explicitly

Discuss renormalization and cutoff-independence of the LL factor

Apart from the two-body scattering parameters, the LL factor depends on the
three-body force, which should be determined prior to calculating the matrix
element. Is this dependence significant numerically?
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Matching of the parameters of the Lagrangian

Two-body sector: S-wave scattering lengths a0, a2
Two independent three-body couplings without derivatives:

L3 = D1(π
†π)3 + D2(π

†π†)(π†π)(ππ)

Tree-level matching to ChPT:

pi

pj

pk qi

qj

qk pi

pj

pk qi

qj

qk

Two independent K → 3π couplings

LK = G1

(
K †+π0π0π+ + h.c.

)
+ G2

(
K †+π+π+π− + h.c.

)
At lowest order in EFT expansion, G2 = −2G1 + O(G 2

F )
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Renormalization and cutoff independence

5 independent particle-dimer couplings but only 2 independent three-particle
couplings at lowest order. Are all observables cutoff-independent after matching
three-particle amplitudes at threshold?

→ Matching renders all observables cutoff-independent. Unphysical quantities, in
general, are cutoff-dependent; The running of the particle-dimer coupling
constants is irregular (reminiscent of the log-periodic behavior)
The Faddeev eq. for the particle-dimer w.f. is solved, using contour deformation
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LL factor for the K → 3π decays

(
⟨π+(p1)π

+(p2)π
−(p3)|K+⟩

⟨π0(p1)π
0(p2)π

+(p3)|K+⟩

)
=

(
Xc0 Xc2

Xn0 Xn2

)(
g (1,0)

g (3,2)

)
Infinite-volume particle-dimer scattering wave functions → Xαβ(

L3/2⟨Γn, 1|K+⟩
L3/2⟨Γn, 3|K+⟩

)
=

(
A10 A12

A30 A32

)(
g (1,0)

g (3,2)

)
Finite-volume particle-dimer wave functions → Aij(

⟨π+π+π−|K+⟩
⟨π0π0π+|K+⟩

)
=

(
Lc1 Lc3

Ln1 Ln3

)(
L3/2⟨Γn, 1|K+⟩
L3/2⟨Γn, 3|K+⟩

)
,

(
Lc1 Lc3

Ln1 Ln3

)
=

(
Xc0 Xc2

Xn0 Xn2

)(
A10 A12

A30 A32

)−1
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Cutoff independence of the LL factor
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Sensitivity towards scattering lengths vs three-body force
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2× 2 LL factor, corresponding to K+ → π+π+π− and K+ → π0π0π+ decays

Sensitive to the values of a0, a2, very little dependence on the three-body force!
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Conclusions

In the analysis of lattice data, EFT can be used to systematically relate the finite-
and infinite-volume observables. This facilitates the extraction of scattering
observables from lattice data

The crucial point: decoupling of short- and long-range physics

The quantization condition and an analog of the LL formula in the three-particle
sector is derived in a manifestly Lorentz-invariant form

Decays of K+ into three pions: everything ready!

LL factor worked out explicitly to lowest order; all isospin channels are included
Renormalization is addressed in detail. Number of independent particle-dimer
three-body couplings exceeds the number of independent three-pion amplitudes.
However, matching renders all observables cutoff-independent
Very little dependence on the three-body input! At the first stage, matching to the
ChPT amplitude suffices (power counting, away from singular values of couplings)
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Spares
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Higher partial waves, derivative couplings

The dimer field with an arbitrary (integer) spin

Tℓm =
∑
µi ,νi

(c−1)ℓmµ1···µℓ
Λµ1
ν1 · · ·Λµℓ

νℓ
T ν1···νℓ , Λµ

νv
ν = vµ0 = (1, 0)

(Symmetric) dimer field obeys the constraints

vµiT
µ1···µℓ = 0, Tµ1···µi ···µℓ

µi
= 0

Interaction of a dimer with two particles

L2 =
∑
ℓm

σℓT
†
ℓmTℓm +

∑
ℓm

(T †ℓmOℓm + h.c.)
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Two-particle vertices

Generalization of the on-shell three-momentum to moving frames:

w̄µ
⊥ = w̄µ − vµ(vw̄) , w̄µ = Λµ

νw
ν , wµ = vµwv + i(∂µ − vµ(v∂))

The boost Λ renders the total momentum of the pair Pµ parallel to vµ

Λµ
ν (v , u)u

µ = vµ , uµ =
Pµ

√
P2

, Pµ = p̃µ1 + p̃µ2 (on-shell)

The vertices:

O =
f
(0)
0

2
ϕ2 +

f
(2)
0

4
(ϕw̄µ

⊥w̄⊥µϕ− w̄µ
⊥ϕw̄⊥µϕ) + · · ·

Oµν =
f 02
2

(
3(ϕw̄µ

⊥w̄
µ
⊥ϕ− w̄µ

⊥ϕw̄
ν
⊥ϕ)− (gµν − vµvν)(ϕw̄λ

⊥w̄⊥λϕ− w̄λ
⊥ϕw̄⊥λϕ)

)
+ · · ·

. . . and so on
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Three-particle force

L3 =
∑

ℓm,ℓ′m′

∑
LL′JM

T †ℓ′m′
(
Y JM
L′ℓ′ (w ,m′)ϕ†

)
T ℓ′ℓ
JL′L(∆,

→
∆T ,

←
∆T )

((
Y JM
Lℓ (w ,m)

)∗
ϕ
)
Tℓm

Y JM
Lℓ (k,m) = ⟨L(M −m), ℓm|JM⟩YL(M−m)(k) , wµ = Λµ

νw
ν

The three-body force is parameterized by effective couplings

T ℓ′ℓ
JL′L(∆,

→
∆T ,

←
∆T ) = h0 + h1∆+ h2(

→
∆T +

←
∆T ) + · · ·

∆ = K 2 − (3m)2︸ ︷︷ ︸
3-body system

, ∆T = P2 − (2m)2︸ ︷︷ ︸
2-body subsystem

Number of independent couplings depends on the detailed dynamics of the system!
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The Bethe-Salpeter equation

Mℓ′m′,ℓm = Zℓ′m′,ℓm +
∑
ℓ′′

Zℓ′m′,ℓ′′m′′Sℓ′′Mℓ′′m′′,ℓm

The two-body propagator

Sℓ(s) = − 1

σℓ − f 2ℓ (s)
1
2 p

2ℓ(s)I (s)

The driving term

Zℓ′m′,ℓ′′m′′(p, q) =
4π (Yℓ′m′(p̃))∗ fℓ′(sp) fℓ(sq)Yℓm(q̃)

2wv (K − p − q)(wv (p) + wv (q) + wv (K − p − q)− vK − iε)

+ 4π
∑
LL′

∑
JM

Y L′ℓ′
JM (p,m′)T ℓ′ℓ

JL′L(∆,∆p,∆q)
(
Y Lℓ

JM (q,m)
)∗
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Relativistic invariance of the framework

Two types of momenta: p̃ = Λ(v)Λ(v , u)p and p = Λ(v)p

Wigner-Thomas rotation

Λ(vΩ) = RΛ(v)Ω−1 , R = R(Ω, v)

Lorentz-transformation of the momenta

p → Λ(vΩ)pΩ = RΛ(v)Ω−1Ωp = Rp , p̃ → Rp̃

Lorentz-transformation of the kernel

Zℓ′m′,ℓm(Ωp,Ωq,ΩK ) =
∑

m′′′m′′

D
(ℓ′)
m′m′′′(R)Zℓ′m′′′,ℓm′′(p, q,K )

(
D

(ℓ)
m′′m(R)

)∗
→ Mℓ′m′,ℓm(Ωp,Ωq,ΩK ) =

∑
m′′′m′′

D
(ℓ′)
m′m′′′(R)Mℓ′m′′′,ℓm′′(p, q,K )

(
D

(ℓ)
m′′m(R)

)∗ ✓

33 / 34



Relativistic invariant three-body QC

det (A ) = 0

Aℓ′m′,ℓm(p, q) = 2w(p)δpq
(
SL
ℓ′m′,ℓm(K − p)

)−1 − 1

L3
Zℓ′m′,ℓm(p, q)

Even in a finite volume, dimer propagator SL does not depend on vµ

Projection on the irreps of the cubic group and its subgroups can be done in a
standard manner

Meaning of the relativistic invariance in a finite volume: Parameterizing the
three-body force in a Lorentz-invariant manner and fitting it to data in different
frames, the finite-volume corrections to the extracted effective couplings will be
exponentially suppressed.
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