Three-particle decays on the lattice

Akaki Rusetsky, University of Bonn
Hirschegg 2024 - Strong interaction physics of heavy flavors,
17 January 2024, Hirschegg, Austria

 SHOTA RUSTAVELI NATIONAL SCIENCE FOUNDATION

Plan

- Introduction: scale separation and the choice of the EFT
- The role of the relativistic invariance
- Lellouch-Lüscher formula for $K \rightarrow 3 \pi$ decays
- Renormalization
- The role of the three-particle force
- Conclusions

Why three particles on the lattice?

- Three-pion decays of K, η, ω
- $a_{1}(1260) \rightarrow \rho \pi \rightarrow 3 \pi$
- $a_{1}(1420) \rightarrow f_{0}(980) \pi \rightarrow 3 \pi$
- Exotica: $T_{c c}(3875)^{+} \rightarrow D D^{*} \rightarrow D D \pi, \ldots$
- Roper resonance: πN and $\pi \pi N$ final states
- Few-body physics: reactions with the light nuclei

Lattice vs. infinite volume: observables

- Infinite volume:

Three-particle bound states; Elastic scattering; Rearrangement reactions; Breakup; Three-particle resonances; Decay matrix elements (complex): e.g., $\langle\pi \pi \pi| H_{W}|K\rangle$

- Finite volume:

Two- and three-particle energy levels; Matrix elements between eigenstates (real)
How does one connect these two sets? EFT serves as a bridge!

"Scattering" in a finite volume

The scattering observables cannot be directly extracted from the amplitudes calculated on the lattice!

- (Periodic) boundary conditions imposed
- The spatial size of the box, L, is finite
- Assume the temporal size $L_{t} \gg L, L_{t} \rightarrow \infty$
- Three-momenta are quantized $\mathbf{p}=\frac{2 \pi}{L} \mathbf{n}, \quad \mathbf{n} \in \mathbb{Z}^{3}$
- Discrete energy levels: $E_{n+1}-E_{n}=O\left(L^{-2}\right)$

> How does one extract the scattering observables: phase shifts, cross sections, ... from the measured quantities on the lattice?

EFT meets lattice

- When $R<L$, well-separated hadrons can be formed, QCD \rightarrow ChPT
- When $R \ll L$, wave function has asymptotic form \rightarrow scattering
- Since $p \sim 1 / L$ and $R \sim 1 / m$, then from $R \ll L$: follows $p \ll m$: non-relativistic EFT (NREFT)
- Polarization effects, caused by creation/annihilation of the particles, are exponentially small and can be neglected

```
Scale separation: QCD (in a finite volume) => EFT (in a finite volume)
```


Three-particle quantization condition

- Is the three-particle spectrum determined solely in terms of the S-matrix?
K. Polejaeva and AR, 2012: Yes!
- Three different but equivalent formulations of the three-particle quantization condition are available
- RFT (Relativistic Field Theory): Hansen \& Sharpe, 2014
- NREFT (Non-Relativistic Effective Field Theory): Hammer, Pang \& AR, 2017
- FVU (Finite-Volume Unitarity): Mai \& Döring, 2017
- Enables one to extract scattering observables in the three-body sector from the measured finite-volume spectrum

Non-relativistic EFT: essentials

- Propagator:

$$
\frac{1}{m^{2}-p^{2}}=\underbrace{\frac{1}{2 w(\mathbf{p})\left(w(\mathbf{p})-p^{0}-i \varepsilon\right)}}_{\text {particle }}+\underbrace{\frac{1}{2 w(\mathbf{p})\left(w(\mathbf{p})+p^{0}-i \varepsilon\right)}}_{\text {anti-particle }}
$$

- The vertices in the Lagrangian conserve particle number:

$$
\mathscr{L}=\phi^{\dagger}\left(i \partial_{t}-w\right)(2 w) \phi \underbrace{+\frac{C_{0}}{4} \phi^{\dagger} \phi^{\dagger} \phi \phi+\frac{D_{0}}{36} \phi^{\dagger} \phi^{\dagger} \phi^{\dagger} \phi \phi \phi+\cdots}_{C_{0}, D_{0} \text { encode short-range physics }}
$$

- Dimer: an alternative description of an infinite bubble sum; dummy field in the path integral
dimer :

The quantization condition (CM frame) (Hammer, Pang \& AR, 2017)

$$
\begin{gathered}
\mathcal{M}(\mathbf{p}, \mathbf{q} ; E)=Z(\mathbf{p}, \mathbf{q} ; E)+8 \pi \int^{\wedge} \frac{d^{3} \mathbf{k}}{(2 \pi)^{3} 2 w(\mathbf{k})} Z(\mathbf{p}, \mathbf{k} ; E) \tau(\mathbf{k} ; E) \mathcal{M}(\mathbf{k}, \mathbf{q} ; E) \\
Z(\mathbf{p}, \mathbf{q} ; E)=\frac{1}{2 w(\mathbf{p}+\mathbf{q})(w(\mathbf{p})+w(\mathbf{q})+w(\mathbf{p}+\mathbf{q})-E)}+\tilde{H}_{0}+\cdots
\end{gathered}
$$

$$
\text { 2-body amplitude: } \quad 4 w\left(k^{*}\right) \tau^{-1}(\mathbf{k} ; E)=k^{*} \cot \delta\left(k^{*}\right)+\underbrace{\sqrt{\frac{s_{2}}{4}-m^{2}}}_{=k^{*}}
$$

Finite volume: $\mathbf{p}=\frac{2 \pi}{L} \mathbf{n}, \mathbf{n} \in \mathbb{Z}^{3}$, poles of the scattering matrix \Rightarrow spectrum

The 3-particle analog of the Lellouch-Lüscher formula (F. Müller \& AR, 2020)

- Final-state interactions lead to an irregular L-dependence of the matrix element

- The non-relativistic Lagrangian

$$
\begin{aligned}
\mathscr{L} & =\phi^{\dagger}\left(i \partial_{t}-w\right)(2 w) \phi+\frac{C_{0}}{4} \phi^{\dagger} \phi^{\dagger} \phi \phi+\cdots+K^{\dagger}\left(i \partial_{t}-w_{K}\right)\left(2 w_{K}\right) K \\
& +g\left(K^{\dagger} \phi \phi \phi+\text { h.c. }\right)+\cdots
\end{aligned}
$$

- Calculate the decay matrix element in a finite and in the infinite volume, extract g
- Matrix elements are related through

$$
\left.\left|\langle n| H_{W}\right| K\right\rangle_{L}|=\underbrace{\mathbb{L}_{3}(L)}_{\text {depends on pion interactions }}|\langle\pi \pi \pi ; \text { out }| H_{W}|K\rangle_{\infty} \mid
$$

Relativistic invariance in the three-particle sector

- In the infinite volume, one resorts to the formalism that involves on-mass shell matrix elements only, in order to avoid ambiguities. The observables in a finite volume should be directly related to the infinite-volume S-matrix
\hookrightarrow Three-dimensional formalism, manifest Lorentz invariance is lost
\hookrightarrow Only Lorentz-invariant operators in the Lagrangian?
\hookrightarrow Proliferation of the independent couplings that should be extracted from lattice data in different moving frames
- In two-particle sector, the problem is solved by dim.reg.+threshold expansion. Sectors with more particles?

How does one interpret the relativistic invariance of the QC?

- A finite box breaks Lorentz/rotational invariance \rightarrow only infinite volume
- Scalar particles, S-wave:

Particle-dimer amplitude : $\mathscr{M}(P, p ; Q, q)=\mathscr{M}\left(P^{\prime}, p^{\prime} ; Q^{\prime}, q^{\prime}\right)$
Three-particle amplitude : $T\left(p_{1}, p_{2}, p_{3} ; p_{1}, q_{2}, q_{3}\right)=T\left(p_{1}^{\prime}, p_{2}^{\prime}, p_{3}^{\prime} ; p_{1}^{\prime}, q_{2}^{\prime}, q_{3}^{\prime}\right)$

- Including spins and higher partial waves in the three-dimensional formalism accomplished albeit technically challenging
- Enables to describe the data taken in different moving frames by using the relativistic-invariant three-body force \rightarrow less independent fitting parameters
- Methodology: write down the scattering equations in the manifestly Lorentz-invariant form

Explicitly Lorentz-invariant three-particle formalism

(F. Müller, J.-Y. Pang, AR and J.-J. Wu, JHEP 02 (2022) 158)

- Choose "quantization axis" in direction of an arbitrary unit vector $v^{\mu}, v^{2}=1$
- The Lagrangian:

$$
\mathscr{L}=\phi^{\dagger}\left(i(v \partial)-w_{v}\right)\left(2 w_{v}\right) \phi+\sum_{\ell} \sigma_{\ell} T_{\mu_{1} \cdots \mu_{\ell}}^{\dagger} T^{\mu_{1} \cdots \mu_{\ell}}+\frac{1}{2}\left(\sum_{\ell} T_{\mu_{1} \cdots \mu_{\ell}}^{\dagger} O^{\mu_{1} \cdots \mu_{\ell}}+\text { h.c. }\right)+\cdots
$$

- Here, $w_{v}=\sqrt{m^{2}+\partial^{2}-(v \partial)^{2}}$ and $O^{\mu_{1} \cdots \mu_{\ell}}$ denote the covariant operators, constructed out of two ϕ fields
- The propagator:

$$
\langle 0| T \phi(x) \phi^{\dagger}(x)|0\rangle=\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{e^{-i k(x-y)}}{2 w_{v}(k)\left(w_{v}(k)-(v k)-i \varepsilon\right)}
$$

Particle-dimer picture

- Particle-dimer Lagrangian:

$$
\mathscr{L}=\phi^{\dagger}\left(i(v \cdot \partial)-w_{v}\right)\left(2 w_{v}\right) \phi+\sigma T^{\dagger} T+\left(T^{\dagger}\left[\frac{f_{0}}{2} \phi \phi+\cdots\right]+\text { h.c. }\right)
$$

- Matching: $f_{0}, \ldots \leftrightarrow C_{0}, \ldots \leftrightarrow a, r, \ldots, \quad \sigma= \pm 1$.
- v^{μ} is a unit vector in the direction of the total four-momentum of the three-particle system

Particle-dimer picture in the three-particle sector

- The particle-dimer Lagrangian in the three-particle sector

$$
\mathscr{L}_{3}=h_{0} T^{\dagger} T \phi^{\dagger} \phi+\cdots
$$

- Matching: $h_{0}, \ldots \leftrightarrow D_{0}, \ldots$
- Terms with higher derivatives, higher dimer spin and orbital momentum should be added

The scattering equation in the infinite volume

Bethe-Salpeter equation

$$
\begin{gathered}
\mathcal{M}(p, q)=Z(p, q)+8 \pi \int \frac{d^{3} k_{\perp}}{(2 \pi)^{3} 2 w_{v}(k)} \theta\left(\Lambda^{2}+m^{2}-(v k)^{2}\right) Z(p, k) \tau(K-k) \mathcal{M}(k, q) \\
\tau(P)=\frac{2 \sqrt{P^{2}}}{k^{*} \cot \delta\left(k^{*}\right)-i k^{*}} \quad k^{*}=\sqrt{\frac{P^{2}}{4}-m^{2}} \\
Z(p, q)=\frac{1}{2 w_{v}(K-p-q)\left(w_{v}(p)+w_{v}(q)+w_{v}(K-p-q)-(v K)-i \varepsilon\right)}+\tilde{H}_{0}+\cdots
\end{gathered}
$$

Relativistic invariant QC in the three-body sector

(F. Müller, J.-Y. Pang, AR and J.-J. Wu, JHEP 02 (2022) 158)

$$
\begin{gathered}
\mathcal{M}_{L}(p, q)=Z(p, q)+\frac{8 \pi}{L^{3}} \sum_{\mathbf{k}} \theta\left(\Lambda^{2}+m^{2}-(v k)^{2}\right) Z(p, k) \frac{\tau_{L}(K-k)}{2 w(\mathbf{k})} \mathcal{M}_{L}(k, q) \\
\tau_{L}(P)=\frac{2 \sqrt{K^{2}}}{k^{*} \cot \delta\left(k^{*}\right)-\frac{2}{\sqrt{\pi} L \gamma} Z_{00}^{\mathrm{P}}\left(1 ; q_{0}^{2}\right)}, \quad q_{0}=\frac{k^{*} L}{2 \pi} \\
Z(p, q)=\frac{1}{2 w_{v}(K-p-q)\left(w_{v}(p)+w_{v}(q)+w_{v}(K-p-q)-(v K)-i \varepsilon\right.}+\tilde{H}_{0}+\cdots
\end{gathered}
$$

- Quantization condition:

$$
\operatorname{det} \mathscr{A}=0, \quad \mathscr{A}_{p q}=L^{3} 2 w(\mathbf{p}) \delta_{\mathbf{p q}}^{3}\left(8 \pi \tau_{L}(K-p)\right)^{-1}-Z(p, q)
$$

Quantization condition: essentials

- The solution for the scattering amplitude in the infinite volume is manifestly relativistic invariant:

$$
\mathscr{M}(p, q ; K ; v)=\mathscr{M}\left(p^{\prime}, q^{\prime} ; K^{\prime} ; v^{\prime}\right)
$$

- Relativistic invariance is achieved by expressing v^{μ} in terms of the external momenta

$$
\text { a natural choice: } \quad v^{\mu}=K^{\mu} / \sqrt{K^{2}}
$$

- Three-body amplitude expressed through particle-dimer amplitude \rightarrow relativistic-invariant
- Analysis of lattice data: two-body interactions as an input: $k^{*} \cot \delta\left(k^{*}\right)$ fitted in the two-particle sector
- Extracting short-range quantities encoded in the three-body couplings \tilde{H}_{0}, \ldots - should be fitted to the three-particle energies

Relativistic invariant formalism for the three-particle decays

(F. Müller, J.-Y. Pang, AR and J.-J.Wu, JHEP 02 (2023) 214)

Applicable to: decays through the weak or electromagnetic interactions; isospin-breaking decays: pole on the real axis, example: $K \rightarrow 3 \pi$

- The Lagrangian is manifestly relativistic invariant

$$
\begin{aligned}
\mathscr{L}_{K} & =K^{\dagger}\left(i(v \partial)-w_{v}^{K}\right)\left(2 w_{v}^{K}\right) K \\
& +\sqrt{4 \pi} \sum_{\ell m} \frac{(-1)^{\ell}}{\sqrt{2 \ell+1}}\left(K^{\dagger} G_{\ell}\left(\Delta_{T}\right)\left(\left(\mathscr{Y}_{\ell,-m}(\underline{w})\right)^{*} \phi\right) T_{\ell m}+\text { h.c. }\right)
\end{aligned}
$$

- The effective couplings

$$
G_{\ell}\left(\Delta_{T}\right)=G_{\ell}^{(0)}+G_{\ell}^{(1)} \Delta_{T}+\cdots
$$

The 3-particle LL factor

The LL formula relates matrix elements in a finite and infinite volume

$$
\begin{aligned}
L_{\alpha}^{3 / 2}\langle n| J_{K}^{\dagger}(0)|0\rangle & =\sum_{\ell, i} A_{\ell}^{(i)}\left(K_{\alpha}, L_{\alpha}\right) G_{\ell}^{(i)} \\
\left\langle\pi\left(k_{1}\right) \pi\left(k_{2}\right) \pi\left(k_{3}\right)\right| J_{K}^{\dagger}(0)|0\rangle & =\sum_{\ell, i} X_{\ell}^{(i)}(K) G_{\ell}^{(i)} \\
\hookrightarrow\left\langle\pi\left(k_{1}\right) \pi\left(k_{2}\right) \pi\left(k_{3}\right) ; \text { out }\right| H_{W}|K\rangle_{\infty} & =\mathbb{L}_{3}(\{k\}) L^{3 / 2}\langle n| H_{W}|K\rangle_{L}
\end{aligned}
$$

- The factor $\mathbb{L}_{3}(\{k\})$ depends on the $\pi \pi, \pi \pi \pi$ interactions and on L, but not on the couplings that describe the short-range part of the $K \rightarrow 3 \pi$ amplitude!
- The derivative couplings emerge at higher orders; decay amplitudes into different final states mix. The three-particle LL factor becomes a matrix

LL factor in the $K \rightarrow 3 \pi$ decays

(J.-Y. Pang, R. Bubna, F. Müller, AR and J.-J. Wu, arXiv:2312.04391)

Objectives:

- Provide a numerical implementation of the analytic expressions (lowest order in the EFT expansion, only S-wave). Include isospin channels explicitly
- Discuss renormalization and cutoff-independence of the LL factor
- Apart from the two-body scattering parameters, the LL factor depends on the three-body force, which should be determined prior to calculating the matrix element. Is this dependence significant numerically?

Matching of the parameters of the Lagrangian

- Two-body sector: S-wave scattering lengths a_{0}, a_{2}
- Two independent three-body couplings without derivatives:

$$
\mathscr{L}_{3}=D_{1}\left(\boldsymbol{\pi}^{\dagger} \boldsymbol{\pi}\right)^{3}+D_{2}\left(\boldsymbol{\pi}^{\dagger} \boldsymbol{\pi}^{\dagger}\right)\left(\boldsymbol{\pi}^{\dagger} \boldsymbol{\pi}\right)(\boldsymbol{\pi} \boldsymbol{\pi})
$$

- Tree-level matching to ChPT:

- Two independent $K \rightarrow 3 \pi$ couplings

$$
\mathscr{L}_{K}=G_{1}\left(K_{+}^{\dagger} \pi_{0} \pi_{0} \pi_{+}+\text {h.c. }\right)+G_{2}\left(K_{+}^{\dagger} \pi_{+} \pi_{+} \pi_{-}+\text {h.c. }\right)
$$

- At lowest order in EFT expansion, $G_{2}=-2 G_{1}+O\left(G_{F}^{2}\right)$

Renormalization and cutoff independence

- 5 independent particle-dimer couplings but only 2 independent three-particle couplings at lowest order. Are all observables cutoff-independent after matching three-particle amplitudes at threshold?
\rightarrow Matching renders all observables cutoff-independent. Unphysical quantities, in general, are cutoff-dependent; The running of the particle-dimer coupling constants is irregular (reminiscent of the log-periodic behavior)
- The Faddeev eq. for the particle-dimer w.f. is solved, using contour deformation

LL factor for the $K \rightarrow 3 \pi$ decays

$$
\binom{\left\langle\pi^{+}\left(p_{1}\right) \pi^{+}\left(p_{2}\right) \pi^{-}\left(p_{3}\right) \mid K^{+}\right\rangle}{\left\langle\pi^{0}\left(p_{1}\right) \pi^{0}\left(p_{2}\right) \pi^{+}\left(p_{3}\right) \mid K^{+}\right\rangle}=\left(\begin{array}{cc}
X_{c 0} & X_{c 2} \\
X_{n 0} & X_{n 2}
\end{array}\right)\binom{g^{(1,0)}}{g^{(3,2)}}
$$

Infinite-volume particle-dimer scattering wave functions $\rightarrow X_{\alpha \beta}$

$$
\binom{L^{3 / 2}\left\langle\Gamma n, 1 \mid K^{+}\right\rangle}{ L^{3 / 2}\left\langle\Gamma n, 3 \mid K^{+}\right\rangle}=\left(\begin{array}{ll}
A_{10} & A_{12} \\
A_{30} & A_{32}
\end{array}\right)\binom{g^{(1,0)}}{g^{(3,2)}}
$$

Finite-volume particle-dimer wave functions $\rightarrow A_{i j}$

$$
\begin{aligned}
\binom{\left\langle\pi^{+} \pi^{+} \pi^{-} \mid K^{+}\right\rangle}{\left\langle\pi^{0} \pi^{0} \pi^{+} \mid K^{+}\right\rangle} & =\left(\begin{array}{ll}
\mathbb{L}_{c 1} & \mathbb{L}_{c 3} \\
\mathbb{L}_{n 1} & \mathbb{L}_{n 3}
\end{array}\right)\binom{L^{3 / 2}\left\langle\Gamma n, 1 \mid K^{+}\right\rangle}{ L^{3 / 2}\left\langle\Gamma n, 3 \mid K^{+}\right\rangle}, \\
\left(\begin{array}{ll}
\mathbb{L}_{c 1} & \mathbb{L}_{c 3} \\
\mathbb{L}_{n 1} & \mathbb{L}_{n 3}
\end{array}\right) & =\left(\begin{array}{ll}
X_{c 0} & X_{c 2} \\
X_{n 0} & X_{n 2}
\end{array}\right)\left(\begin{array}{ll}
A_{10} & A_{12} \\
A_{30} & A_{32}
\end{array}\right)^{-1}
\end{aligned}
$$

Cutoff independence of the LL factor

Sensitivity towards scattering lengths vs three-body force

- $2 \times 2 \mathrm{LL}$ factor, corresponding to $K^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}$and $K^{+} \rightarrow \pi^{0} \pi^{0} \pi^{+}$decays
- Sensitive to the values of a_{0}, a_{2}, very little dependence on the three-body force!

Conclusions

- In the analysis of lattice data, EFT can be used to systematically relate the finiteand infinite-volume observables. This facilitates the extraction of scattering observables from lattice data
- The crucial point: decoupling of short- and long-range physics
- The quantization condition and an analog of the LL formula in the three-particle sector is derived in a manifestly Lorentz-invariant form
- Decays of K^{+}into three pions: everything ready!
- LL factor worked out explicitly to lowest order; all isospin channels are included
- Renormalization is addressed in detail. Number of independent particle-dimer three-body couplings exceeds the number of independent three-pion amplitudes. However, matching renders all observables cutoff-independent
- Very little dependence on the three-body input! At the first stage, matching to the ChPT amplitude suffices (power counting, away from singular values of couplings)

Spares

Higher partial waves, derivative couplings

- The dimer field with an arbitrary (integer) spin

$$
T_{\ell m}=\sum_{\mu_{i}, \nu_{i}}\left(c^{-1}\right)_{\mu_{1} \cdots \mu_{\ell}}^{\ell m} \underline{\Lambda}_{\nu_{1}}^{\mu_{1}} \cdots \underline{\Lambda}_{\nu_{\ell}}^{\mu_{\ell}} T^{\nu_{1} \cdots \nu_{\ell}}, \quad \underline{\Lambda}_{\nu}^{\mu} v^{\nu}=v_{0}^{\mu}=(1, \mathbf{0})
$$

- (Symmetric) dimer field obeys the constraints

$$
v_{\mu_{i}} T^{\mu_{1} \cdots \mu_{\ell}}=0, \quad T_{\mu_{i}}^{\mu_{1} \cdots \mu_{i} \cdots \mu_{\ell}}=0
$$

- Interaction of a dimer with two particles

$$
\mathscr{L}_{2}=\sum_{\ell m} \sigma_{\ell} T_{\ell m}^{\dagger} T_{\ell m}+\sum_{\ell m}\left(T_{\ell m}^{\dagger} O_{\ell m}+\text { h.c. }\right)
$$

Two-particle vertices

- Generalization of the on-shell three-momentum to moving frames:

$$
\bar{w}_{\perp}^{\mu}=\bar{w}^{\mu}-v^{\mu}(v \bar{w}), \quad \bar{w}^{\mu}=\Lambda_{\nu}^{\mu} w^{\nu}, \quad w^{\mu}=v^{\mu} w_{v}+i\left(\partial^{\mu}-v^{\mu}(v \partial)\right)
$$

- The boost Λ renders the total momentum of the pair P^{μ} parallel to v^{μ}

$$
\Lambda_{\nu}^{\mu}(v, u) u^{\mu}=v^{\mu}, \quad u^{\mu}=\frac{P^{\mu}}{\sqrt{P^{2}}}, \quad P^{\mu}=\tilde{p}_{1}^{\mu}+\tilde{p}_{2}^{\mu}(\text { on-shell })
$$

- The vertices:

$$
\begin{aligned}
O & =\frac{f_{0}^{(0)}}{2} \phi^{2}+\frac{f_{0}^{(2)}}{4}\left(\phi \bar{w}_{\perp}^{\mu} \bar{w}_{\perp \mu} \phi-\bar{w}_{\perp}^{\mu} \phi \bar{w}_{\perp \mu} \phi\right)+\cdots \\
O^{\mu \nu} & =\frac{f_{2}^{0}}{2}\left(3\left(\phi \bar{w}_{\perp}^{\mu} \bar{w}_{\perp}^{\mu} \phi-\bar{w}_{\perp}^{\mu} \phi \bar{w}_{\perp}^{\nu} \phi\right)-\left(g^{\mu \nu}-v^{\mu} v^{\nu}\right)\left(\phi \bar{w}_{\perp}^{\lambda} \bar{w}_{\perp \lambda} \phi-\bar{w}_{\perp}^{\lambda} \phi \bar{w}_{\perp \lambda} \phi\right)\right)+\cdots
\end{aligned}
$$

... and so on

Three-particle force

$$
\begin{gathered}
\mathscr{L}_{3}=\sum_{\ell m, \ell^{\prime} m^{\prime} L^{\prime} L^{\prime} J M} T_{\ell^{\prime} m^{\prime}}^{\dagger}\left(\mathscr{Y}_{L^{\prime} \ell^{\prime}}^{J M}\left(\underline{w}, m^{\prime}\right) \phi^{\dagger}\right) T_{J_{L^{\prime} L}^{\prime}(}^{\ell^{\prime}}\left(\Delta, \vec{\Delta}_{T}, \overleftarrow{\Delta}_{T}\right)\left(\left(\mathscr{\mathscr { O }}_{L \ell}^{J M}(\underline{w}, m)\right)^{*} \phi\right) T_{\ell m} \\
\mathscr{Y}_{L \ell}^{J M}(\mathbf{k}, m)=\langle L(M-m), \ell m \mid J M\rangle \mathscr{\mathscr { Y } _ { L (M - m) } (\mathbf { k }) , \quad \underline { w } ^ { \mu } = \underline { \Lambda } _ { \nu } ^ { \mu } w ^ { \nu }}
\end{gathered}
$$

- The three-body force is parameterized by effective couplings

$$
\begin{gathered}
T_{J_{L^{\prime} L}^{\prime}\left(\Delta, \vec{\Delta}_{T}, \overleftarrow{\Delta}_{T}\right)=h_{0}+h_{1} \Delta+h_{2}\left(\vec{\Delta}_{T}+\overleftarrow{\Delta}_{T}\right)+\cdots}^{\underbrace{\Delta=K^{2}-(3 m)^{2}}_{\text {3-body system }}, \quad \underbrace{\Delta_{T}=P^{2}-(2 m)^{2}}_{\text {2-body subsystem }}}
\end{gathered}
$$

- Number of independent couplings depends on the detailed dynamics of the system!

The Bethe-Salpeter equation

$$
\mathscr{M}_{\ell^{\prime} m^{\prime}, \ell m}=Z_{\ell^{\prime} m^{\prime}, \ell m}+\sum_{\ell^{\prime \prime}} Z_{\ell^{\prime} m^{\prime}, \ell^{\prime \prime} m^{\prime \prime}} S_{\ell^{\prime \prime}} \mathscr{M}_{\ell^{\prime \prime} m^{\prime \prime}, \ell m}
$$

- The two-body propagator

$$
S_{\ell}(s)=-\frac{1}{\sigma_{\ell}-f_{\ell}^{2}(s) \frac{1}{2} p^{2 \ell}(s) /(s)}
$$

- The driving term

$$
\begin{aligned}
Z_{\ell^{\prime} m^{\prime}, \ell^{\prime \prime} m^{\prime \prime}}(p, q) & =\frac{4 \pi\left(\mathscr{Y}_{\ell^{\prime} m^{\prime}}(\tilde{\mathbf{p}})\right)^{*} f_{\ell^{\prime}}\left(s_{p}\right) f_{\ell}\left(s_{q}\right) \mathscr{Y}_{\ell m}(\tilde{\mathbf{q}})}{2 w_{v}(K-p-q)\left(w_{v}(p)+w_{v}(q)+w_{v}(K-p-q)-v K-i \varepsilon\right)} \\
& +4 \pi \sum_{L L^{\prime}} \sum_{J M} \mathscr{Y}_{J M}^{L^{\prime} \ell^{\prime}}\left(\underline{\mathbf{p}}, m^{\prime}\right) T_{J L^{\prime} L}^{\ell^{\prime} \ell}\left(\Delta, \Delta_{p}, \Delta_{q}\right)\left(\mathscr{Y}_{J M}^{L \ell}(\underline{\mathbf{q}}, m)\right)^{*}
\end{aligned}
$$

Relativistic invariance of the framework

- Two types of momenta: $\tilde{p}=\underline{\Lambda}(v) \Lambda(v, u) p$ and $\underline{p}=\underline{\Lambda}(v) p$
- Wigner-Thomas rotation

$$
\underline{\Lambda}\left(v_{\Omega}\right)=R \underline{\Lambda}(v) \Omega^{-1}, \quad R=R(\Omega, v)
$$

- Lorentz-transformation of the momenta

$$
\underline{p} \rightarrow \underline{\Lambda}\left(v_{\Omega}\right) p_{\Omega}=R \underline{\Lambda}(v) \Omega^{-1} \Omega p=R \underline{p}, \quad \tilde{p} \rightarrow R \tilde{p}
$$

- Lorentz-transformation of the kernel

$$
\begin{aligned}
& Z_{\ell^{\prime} m^{\prime}, \ell m}(\Omega p, \Omega q, \Omega K)=\sum_{m^{\prime \prime \prime} m^{\prime \prime}} \mathscr{D}_{m^{\prime} m^{\prime \prime \prime}}^{\left(\ell^{\prime}\right)}(R) Z_{\ell^{\prime} m^{\prime \prime \prime}, \ell m^{\prime \prime}}(p, q, K)\left(\mathscr{D}_{m^{\prime \prime} m}^{(\ell)}(R)\right)^{*} \\
\rightarrow & \mathscr{M}_{\ell^{\prime} m^{\prime}, \ell m}(\Omega p, \Omega q, \Omega K)=\sum_{m^{\prime \prime \prime} m^{\prime \prime}} \mathscr{D}_{m^{\prime} m^{\prime \prime \prime}}^{\left(\ell^{\prime}\right)}(R) \mathscr{M}_{\ell^{\prime} m^{\prime \prime \prime}, \ell m^{\prime \prime}}(p, q, K)\left(\mathscr{D}_{m^{\prime \prime} m}^{(\ell)}(R)\right)^{*}
\end{aligned}
$$

Relativistic invariant three-body QC

$$
\begin{gathered}
\operatorname{det}(\mathscr{A})=0 \\
\mathscr{A}_{\ell^{\prime} m^{\prime}, \ell m}(p, q)=2 w(\mathbf{p}) \delta_{\mathbf{p q}}\left(S_{\ell^{\prime} m^{\prime}, \ell m}^{L}(K-p)\right)^{-1}-\frac{1}{L^{3}} Z_{\ell^{\prime} m^{\prime}, \ell m}(p, q)
\end{gathered}
$$

- Even in a finite volume, dimer propagator S^{L} does not depend on v^{μ}
- Projection on the irreps of the cubic group and its subgroups can be done in a standard manner
- Meaning of the relativistic invariance in a finite volume: Parameterizing the three-body force in a Lorentz-invariant manner and fitting it to data in different frames, the finite-volume corrections to the extracted effective couplings will be exponentially suppressed.

