RESONANT MULTI-HADRON SYSTEMS IN FINITE/INFINITE VOLUME

NSF PHY-2012289

DFG CRC 110

Hirschegg meetings 2024

MAXIM MAI

Programm

OUTLINE

Introduction

• Two hadrons

- Chiral Unitary approach
- N*(1535), N*(1650), Lambda 1405

• Three hadrons

- Resonant systems in infinite volume
- Resonant systems in finite volume
- Theoretical extensions / studies
- Summary and outlook

HADRON SPECTRUM

Mostly excited states

 \approx 100 mesons & \approx 50 baryons (****)

Key questions

"what is the pattern of these states?"

"how are they formed?"

- Quark models
- Functional methods[']
- Dynamical coupled-channel models
- Chiral EFT
- Lattice QCD^[2]

[1] Joshua Hoffer talk[2] Sinead Ryan, Marc Wagner, Sasa Prelovsek, ...

MAXIM MAI

BIRD'S VIEW

Physical input

 many experimental data & ongoing experiments^[1] on $\gamma p \rightarrow \pi N, \pi \pi N, K\Lambda, \dots$

Theory

- global analysis through dynamical models^[2]
 - SAID/MAID/...
 - Jülich-Bonn-Washington^[3] jbw.phys.gwu.edu/
 - → gauge invariance/final-state unitarity/...
 - ➡ global description of the spectrum
 - new insights into formation of individual states

^{[3] [}JBW] MM et al. Phys.Rev.C 103 (2021) 6; Phys.Rev.C 106 (2022) 015201; Eur.Phys.J.A 59 (2023) 12

^[1] MAMI/ELSA/JLAB/...

^[2] Tiator/Sato/Workman/Arndt/Aznauryan/....

BIRD'S VIEW

Physical input

 many experimental data & ongoing experiments^[1] on $\gamma p \rightarrow \pi N, \pi \pi N, K\Lambda, \dots$

Theory

- global analysis through dynamical models^[2]
 - SAID/MAID/...
 - Jülich-Bonn-Washington^[3] jbw.phys.gwu.edu/
 - → gauge invariance/final-state unitarity/...
 - ➡ global description of the spectrum
 - new insights into formation of individual states

N*(1440) Roper^[3]

^[1] MAMI/ELSA/JLAB/...

^[2] Tiator/Sato/Workman/Arndt/Aznauryan/....

^{[3] [}JBW] MM et al. Phys.Rev.C 103 (2021) 6; Phys.Rev.C 106 (2022) 015201; Eur.Phys.J.A 59 (2023) 12

FROG'S VIEW

Universal parameters of resonances[1]

- operations on unphysical Riemann Sheets
- central quantity: transition amplitudes
 - Constraints from S-matrix theory
 - Unitarity, Analyticity, Crossing symmetry, ...
 - Constrains
 - Experiment
 - CHPT
 - Lattice QCD

MAXIM MAI

FROG'S VIEW

Universal parameters of resonances^[1]

- operations on unphysical Riemann Sheets
- central quantity: **transition amplitudes**
 - Constraints from S-matrix theory
 - Unitarity, Analyticity, Crossing symmetry,
 - Constrains

[1] **Review**: MM et al. ``Towards a theory of hadron resonances' Phys. Rept. 1001 (2023) [2] Figure Data: Estabrooks et al. Nucl.Phys.B 79; Protopopescu et al. Phys.Rev.D 7;

Tridge (Midland, MI/USA)

MAXIM MAI

TWO HADRONS

MESON-BARYON RESONANCES CHPT/UNITARITY/PHENOMENOLOGY

TRANSITION AMPLITUDE

Chiral unitary approach^[1]

- Chiral Perturbation Theory (#QCD#EFT) dictates the form of the interaction at low energies
- Unitary scattering amplitude from the Bethe-Salpeter equation
 - Fit free parameters to experimental data / LQCD
 - Record complex pole positions
 - Many states can be explained^[2]: $N^{(1535)}$, $N^{(1650)}$, ...

[1] Weise/Kaiser/Meißner/Lutz/Oset/Oller/Ramos/Hyodo/Borasoy...

[2] Kaiser/Siegel/Weise Phys.Lett.B 362 (1995) Lutz/Soyeur Nucl.Phys.A 773 (2006); MM et al. Phys.Lett.B 697 (2011); ...

MAXIM MAI

THE ENIGMA OF THE $\Lambda(1405)$

- Long history of experimental and theoretical efforts[[]
- Second state predicted from UCHPT Λ (1380)
 - no direct experimental verification \bullet
 - confirmed by many critical tests

aon beam aonic Deuto - absorptio
- absorptio
-flight capt
າotoproduc
p collisions
Sequent
Bubble

MAXIM MAI

THE ENIGMA OF THE Λ(1405)

- Theory frontier: NNLO UCHPT determination^[1]
- Consistently two poles, but the second pole is less well known
 - second pole below KbarN threshold
 - line-shape only through $yp \rightarrow K\pi\Sigma^{[2]}$

. . .

MAXIM MAI

UNPHYSICAL QUARK MASSES

CHPT is predestined to scan quark mass dependence

• SU(3) limit provides a simpler pole distribution

- I singlet + 2 octet poles
- LO/NLO ''tracks'' can differ^[2]

[1] Jido et al. Nucl.Phys.A 725 (2003); Bruns/Cieply, SU(3) Nucl. Phys. A 1019 (2022);
[2] Guo/Kamyia/MM/Meißner Phys.Lett.B 846 (2023)
[3] [BaSc] Bulava et al. 2307.10413; 2307.13471 - NEXT TALK

MAXIM MAI

UNPHYSICAL QUARK MASSES

CHPT is predestined to scan quark mass dependence

- Other trajectory >> BaSc setup^[3]
 - Mpi = 200 MeV
 - **Outlook**: add LQCD results as constraints on UCHPT directly... [in progress]

[1] Jido et al. Nucl.Phys.A 725 (2003); Bruns/Cieply, SU(3) Nucl. Phys. A 1019 (2022);
[2] Guo/Kamyia/MM/Meißner Phys.Lett.B 846 (2023)
[3] [BaSc] Bulava et al. 2307.10413; 2307.13471 - NEXT TALK

MAXIM MAI

THREE HADRONS

THEORY AND APPLICATIONS

HADRONIC 3-BODY PROBLEM

- Many known states have large 3-body content
 - Roper(1440)
 - X(3872)
 - a_I(1260)/...
- Beyond Standard Model searches (au-EDM/...)
- Exotic states of matter^[1]

MAXIM MAI

TRANSITION AMPLITUDE

• Three-body scattering amplitude^{[1][2]}

- Express 3-body through 2+1 system
- Genuine integral equation
- **On-shell configurations** are fixed by Unitarity •
- Input: C and K

"Infinite Volume Unitarity" — IVU formalism

APPLICATION: a₁(1260)

- $\pi
 ho$ dynamics dominates the 1-(1++) system
- Integral equation solved
 - Helicity formalism
 - complex momentum mapping
- $\pi \rho / \pi \sigma / \pi (\pi \pi)_2$ extended...

MAXIM MAI

FINITE-VOLUME SPECTRUM

- LQCD provides numerical access to QCD Green's functions
 - in discretised Euclidean space-time
 - in finite-volume
 - mapping through Quantization conditions^[1] 0

^[1] Lüscher, Gottlieb, Rummukainen, Feng, Li, Döring, Briceño, Meißner, Rusetsky, Hansen, MM, Blanton, ... Reviews: Briceno/Dudek/Young (2017) Rev.Mod.Phys. 90 (2018) 2 Hansen/Sharpe Ann.Rev.Nucl.Part.Sci. 69 (2019); MM/Doring/ Rusetsky Eur.Phys.J.ST 230 (2021);

3-BODY QUANTIZATION CONDITION (FVU)

Finite-volume unitarity (FVU['])

- heavily simplified:
 - on-shell particle-configurations: $\Delta E \sim mL$
 - off-shell particle-configurations: $\Delta E \sim e^{-mL}$ 0
- <u>Unitary</u> 3-body amplitude separates these effects \bullet
- unknown volume independent quantities (K, C)

$$0 = \det \left[2L^3 E \left(\tilde{K}_n^{-1} - \Sigma \right) - B - C \right]_{\mathbf{p}'\mathbf{p}}$$

MAXIM MAI

APPLICATION: a₁(1260)

Input:

- 2- and 3-body lattice results with multi-hadron operators[1]
- Unphysical pion mass

Determine infinite-volume quantities

- Pole position of the $a_1(1260)^{[2,3]}$
- Chiral trajectory

[1] [GWQCD] PRD94(2016) PRD98 (2018) PRD 100(2019)
 [2] MM/Culver/Sadasivan/Brett/Döring/Alexandru/Lee [GWQCD] PRL 127 (2022)

MAXIM MAI

CUTOFF DEPENDENCE[']

- 3-body amplitude = genuine integral equation
 - spectator can carry arbitrary momentum away
 - cutoff required (form factors, hard cutoff,...)

$$0 = \det \left[2L^3 E \left(\tilde{K}_n^{-1} - \Sigma \right) - B - C \right]_{\mathbf{p}'\mathbf{p}}$$

$$B(\sqrt{s}) = \frac{1}{\sqrt{s} - \sqrt{s_{\rm on}} + i\epsilon}$$

- energy eigenvalues change slower than $\Delta E \sim e^{-mL}$
- one-particle exchange falls off not rapidly enough

MAXIM MAI

CUTOFF DEPENDENCE[']

- 3-body amplitude = genuine integral equation
 - spectator can carry arbitrary momentum away
 - cutoff required (form factors, hard cutoff,...)

$$0 = \det \left[2L^3 E \left(\tilde{K}_n^{-1} - \Sigma \right) - B - C \right]_{\mathbf{p}'\mathbf{p}}$$

$$B(\sqrt{s}) = \frac{1}{\sqrt{s} - \sqrt{s_{\rm on}} + i\epsilon}$$

Consider fixed C, K then increase <u>hard</u> cutoff ... over-subtract OPE

$$\overline{B(\sqrt{s})} = B(0) + B'(0)\sqrt{s} + \frac{s}{s_{\text{on}}} \frac{N}{2E_{p+p'}} \frac{1}{\sqrt{s} - \sqrt{s_{\text{on}}}}$$

• energy eigenvalues change as $\Delta E \sim e^{-mL}$

MAXIM MAI

CUTOFF DEPENDENCE[1]

- 3-body amplitude = genuine integral equation
 - spectator can carry arbitrary momentum away
 - cutoff required (form factors, hard cutoff,...)

$$0 = \det \left[2L^3 E \left(\tilde{K}_n^{-1} - \Sigma \right) - B - C \right]_{\mathbf{p}'\mathbf{p}}$$

Consider fixed ground-state finite-volume level (E_0)

- change cutoff & refit C
- $\pi \rho / \pi (\pi \pi)_2$ repulsiv system
- $C(\Lambda)$ shows cyclic behaviour^[2]

SUMMARY

New synergetic approaches to universal parameters of resonance become available

Chiral unitary models & LQCD

→QCD symmetries constraints to hadron-hadron dynamics →strong support for the two-pole scenario

→Novel 3-body methodology has matured

→ EFTs and S-matrix theory: bridge to real world physics

Future directions

 \rightarrow Heavy-light systems (chiral trajectory, LHC, ...)

→Roper resonance

THANK YOU

U-CHANNEL IN THE $\Lambda(1405)$

- New insights^[1] from LQCD [next talk]
 - confirming two-pole scenario
- Chiral extrapolations (through UCHPT)^[2]
 - u-channel baryon exchange may complicate the picture (3-body)
 - sub-leading effect

MAXIM MAI

Re[pole]/MeV

$$\{1, 8_{\rm s}, 8_{\rm a}, 10, \overline{10}, 27\}$$

$$\begin{pmatrix} |\pi\Sigma\rangle \\ |\bar{K}N\rangle \\ |\eta\Lambda\rangle \\ |K\Xi\rangle \end{pmatrix} = \frac{1}{\sqrt{40}} \begin{pmatrix} \sqrt{15} & -\sqrt{24} & 0 & -1 \\ -\sqrt{10} & -2 & \sqrt{20} & -\sqrt{6} \\ -\sqrt{5} & -\sqrt{8} & 0 & 3\sqrt{3} \\ \sqrt{10} & 2 & 2\sqrt{5} & \sqrt{6} \end{pmatrix} \begin{pmatrix} |1\rangle \\ |8\rangle \\ |8'\rangle \\ |27\rangle \end{pmatrix},$$

$$C_{\alpha\beta} = \begin{pmatrix} 6 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & -2 \end{pmatrix} \quad \text{for} \quad \alpha, \beta \in \{1, 8, 8', 27\}.$$

$$C_{\alpha\beta}^{\text{NLO1}} = \begin{pmatrix} \frac{4}{3}(3b_0 + 7b_D)m_q & 0 & 0 & 0\\ 0 & \frac{2}{3}(6b_0 + b_D)m_q & -\sqrt{20}b_Fm_q & 0\\ 0 & -\sqrt{20}b_Fm_q & 2(2b_0 + 3b_D)m_q & 0\\ 0 & 0 & 0 & 4(b_0 + b_D)m_q \end{pmatrix},$$

$$C_{\alpha\beta}^{\text{NLO2}} = \begin{pmatrix} -3d_2 + \frac{9}{2}d_3 + d_4 & 0 & 0\\ 0 & \frac{1}{2}(-3d_2 + d_3 + 2d_4) & -\frac{\sqrt{5}}{2}d_1 & 0\\ 0 & -\frac{\sqrt{5}}{2}d_1 & \frac{1}{2}(9d_2 - d_3 + 2d_4) & 0\\ 0 & 0 & 0 & \frac{1}{2}(2d_2 + d_3 + 2d_4) \end{pmatrix}$$

NLO breaks accidental octet symmetry

RESULTS

Delta(1232):

- Large multipoles well determined
- simple Q² dependence

[JBW] MM et al. Phys.Rev.C 103 (2021) 6; Phys.Rev.C 106 (2022) 015201

HADRONIC 3-BODY **PROBLEM: IMPACT**

1) Severt/MM/Meißner JHEPO4(2023) >>> PHD talk on Friday

2) Sirunyan et al. [CMS@CERN] PRL122

3) Experimental programs: GlueX@JLAB; COMPASS@CERN;

LATTICE HADRON SPECTROSCOPY

- Experimentally inaccessible scenarios:
 - Unconventional quantum numbers
 - Three-body scattering

. . .

Unphysical pion mass (chiral trajectories)²²

-0.2

MAXIM MAI

HADRONS IN A

²⁾ Reviews: Hansen/Sharpe Ann.Rev.Nucl.Part.Sci. 69 (2019); MM/Döring/Rusetsky Eur.Phys.J.ST 230 (2021);

3-BODY QUANTISATION CONDITION

Finite-volume unitarity (FVU)^{1,2}

- separates volume dependent terms
- volume independent terms connect infinite/finitevolume spectra

$$0 = \det \left[2L^3 E \left(\tilde{K}_n^{-1} - \Sigma \right) - B - C \right]_{\mathbf{p}'\mathbf{p}}$$

MAXIM MAI

¹⁾ Lüscher, Gottlieb, Rummukainen, Feng, Li, Döring, Briceño, Meißner, Rusetsky, Hansen, MM, Blanton, ...

²⁾ Reviews: Hansen/Sharpe Ann.Rev.Nucl.Part.Sci. 69 (2019); MM/Döring/Rusetsky Eur.Phys.J.ST 230 (2021);

HADRONS IN A BOX

Finite-volume spectrum is real and discrete! ... requires mapping: Quantization condition^{1,2} Heavily simplified: on-shell particle-configurations: $\Delta E \sim mL$ off-shell particle-configurations: $\Delta E \sim e^{-mL}$

MAXIM MAI

¹⁾ Lüscher, Gottlieb, Rummukainen, Feng, Li, Döring, Briceño, Meißner, Rusetsky, Hansen, MM, Blanton, ...

²⁾ Reviews: Hansen/Sharpe Ann.Rev.Nucl.Part.Sci. 69 (2019); MM/Döring/ Busetsky Eur Phys J ST 230 (2021):

Current frontier: 3-body dynamics from LQCD

► 3-body Quantization Conditions¹

► RFT / FVU / NREFT

many perturbatively interacting systems are studied²

1) Rusetsky, Bedaque, Grießhammer, Sharpe, Meißner, Döring, Hansen, Davou Guo....

Reviews:

Hansen/Sharpe Ann.Rev.Nucl.Part.Sci. 69 (2019);

MM/Döring/Rusetsky Eur.Phys.J.ST 230 (2021);

2) MM/Döring PRL122(2019); Blanton et al. PRL 124 (2020); Hansen et al. PRL 126 (2021);

$$0 = \det\left(L^3\left(\tilde{F}/3 - \tilde{F}(\tilde{K}_2^{-1} + \tilde{F} + \tilde{G})^{-1}\tilde{F}\right)^{-1} + K_{\rm df},$$

$$0 = \det \left(B_0 + C_0 - E_L \left(K^{-1} / (32\pi) + \Sigma_L \right) \right)$$
 FVU

Variate $g(\varphi_1 \rightarrow \varphi_0 \varphi_0 \varphi_0)$ coupling:

- avoided level crossing becomes wider
- RFT and FVU

AVOIDED LEVEL CROSS

	The second second						
	a	m_1	c_0	c_1	m_1'	c_0'	c_1'
FVU	-0.1512(9)	3.0229(1)	-0.0188(35)	_	_	_	_
\mathbf{RFT}	-0.1522(12)	-	_	_	3.0232(2)	31.6(8.4)	_
FVU	-0.1569(12)	3.0233(2)	-0.0297(57)	2.29(38)	_	_	_
\mathbf{RFT}	-0.1571(10)	۲ ^μ	—	_	3.0237(2)	37.6(9.0)	2789(540
FVU	-0.1521(11)	3.0205(2)	-0.0475(66)	_	_	_	_
RFT	-0.1531(13)	_	_	_	3.0212(3)	80(14)	_
FVU	-0.1549(16)	3.0205(2)	-0.0595(99)	0.93(41)	_	_	_
RFT	-0.1563(27)	-	_	—	3.0213(3)	97(16)	1773(980
FVU	-0.1444(11)	3.0184(2)	-0.1136(77)	_	_	_	_
RFT	-0.1450(17)	—	_	_	3.0199(2)	178(17)	_
FVU	-0.1464(14)	3.0183(2)	-0.1363(148)	0.84(39)	_	_	_
RFT	-0.1484(16)	—	—	_	3.0200(2)	210(23)	2227(600

... same fit quality

... observables determined consistently

Pole positions

- FVU: complex energy-plane analysis¹
 - --resonance width grows ~ g^2
 - -- avoided level crossing gap >> width
- Similarly from RFT with Breit-Wigner like approximation

