Volume dependence of quantum bound states and resonances

Sebastian König

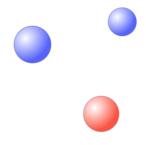
EMMI Workshop and International Workshop L on Gross Properties of Nuclei and Nuclear Excitations

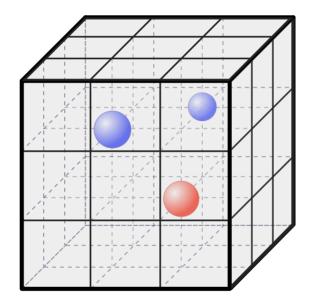
Hirschegg, January 18, 2024

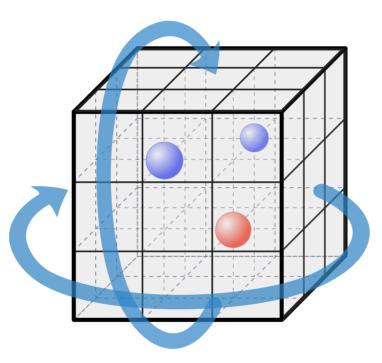
Thanks...

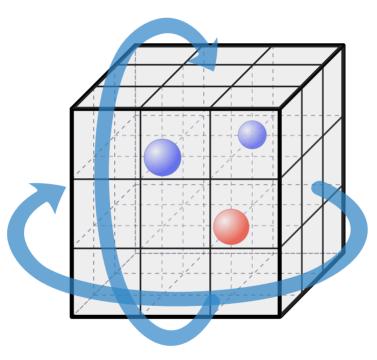
...to my students and collaborators...

- H. Yu, N. Yapa, A. Taurence, A. Andis (NCSU)
- D. Lee (FRIB/MSU), K. Fossez (FSU)
- S. Dietz, H.-W. Hammer, A. Schwenk (TU Darmstadt)
- U.-G. Meißner (U Bonn)
- P. Klos, J. Lynn, S. Bour, ...

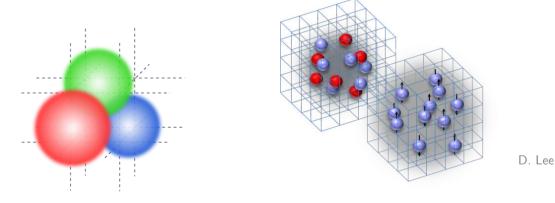

...for support, funding, and computing time...




- Jülich Supercomputing Center
- NCSU High-Performance Computing Services

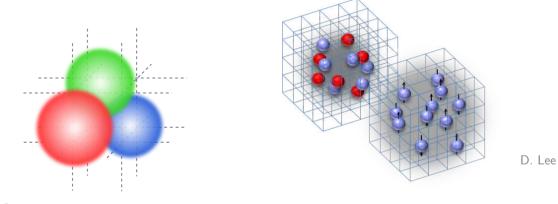

• consider an interacting set of particles (e.g., nucleons)

- consider an interacting set of particles (e.g., nucleons)
- place them in a finite cubic geometry...


- consider an interacting set of particles (e.g., nucleons)
- place them in a finite cubic geometry...
- ...and impose periodic boundary conditions

- consider an interacting set of particles (e.g., nucleons)
- place them in a finite cubic geometry...
- ...and impose periodic boundary conditions
- lattice spacing (if any): UV effects; box size: IR effects → physics

Relevance of finite-volume relations

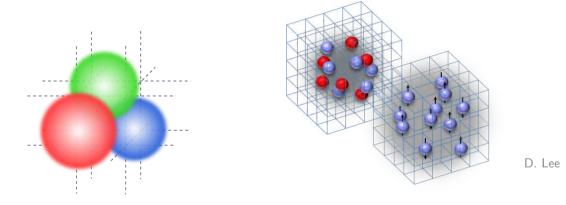

Lattice simulations

- lattice QCD: few baryons, small volumes
- Beane et al., Prog. Part. Nucl. Phys. 66 1 (2011); ...
- lattice EFT: larger volumes, many more particles
- Epelbaum et al., PRL 104 142501 (2010), ...

Relevance of finite-volume relations

Lattice simulations

- lattice QCD: few baryons, small volumes
- Beane et al., Prog. Part. Nucl. Phys. 66 1 (2011); ...
- lattice EFT: larger volumes, many more particles
- Epelbaum et al., PRL 104 142501 (2010), ...


Harmonic oscillator calculations

infrared basis extrapolation

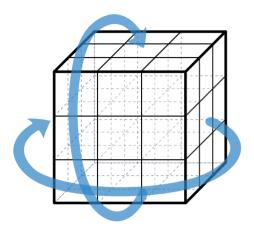
- More et al, PRC **87** 044326 (2013); ...
- Busch formula: extraction of scattering phase shifts
 - Busch et al., Found. Phys. 28 549 (1998); ...; Zhang et al., PRL 125 112503 (2020)

Relevance of finite-volume relations

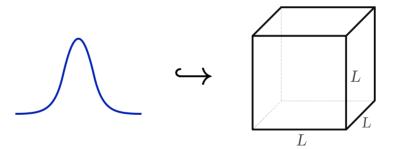
Lattice simulations

- lattice QCD: few baryons, small volumes
- Beane et al., Prog. Part. Nucl. Phys. 66 1 (2011); ...
- **lattice EFT:** larger volumes, many more particles
- Epelbaum et al., PRL 104 142501 (2010), ...

Harmonic oscillator calculations

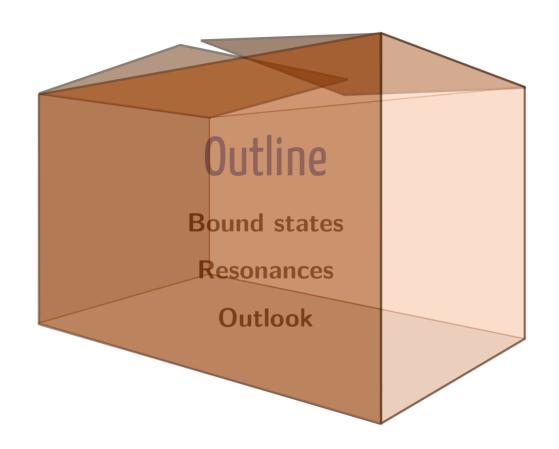

infrared basis extrapolation

- More et al, PRC 87 044326 (2013); ...
- Busch formula: extraction of scattering phase shifts


Busch et al., Found. Phys. 28 549 (1998); ...; Zhang et al., PRL 125 112503 (2020)

Dedicated finite-volume few-body simulations

Finite periodic boxes


- physical system enclosed in finite volume (box)
- typically used: periodic boundary conditions
- leads to volume-dependent energies

Lüscher formalism

- physical properties encoded in the volume-dependent energy levels
- infinite-volume S-matrix governs discrete finite-volume spectrum
- finite volume used as theoretical tool

Lüscher, Commun. Math. Phys. 104 177 (1986); ...

Bound states

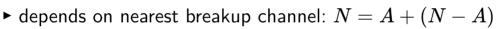
SK et al., PRL **107** 112001 (2011); Annals Phys. **327**, 1450 (2012)

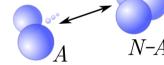
SK + Lee, PLB **779** 9 (2018)

H. Yu, SK, D. Lee, PRL 131 212502 (2023)

Bound-state volume dependence

ullet finite volume affects the binding energy of states: $E_B o E_B(L)$


$$\Delta E_B(L) \sim -|A_\infty|^2 ext{exp}ig(-\kappa Lig)/L + \cdots$$
 , $oldsymbol{A}_\infty = ext{ANC}$

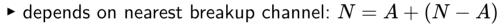

Lüscher, Commun. Math. Phys. 104 177 (1986); ...

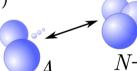
infinite-volume properties determine volume dependence

SK + Lee, PLB **779** 9 (2018)

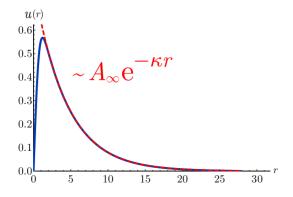
ullet binding momentum $\kappa=\kappa_{A|N-A}=\sqrt{2\mu_{A|N-A}(B_N{-}B_A{-}B_{N-A})}$

- lacktriangle asymptotic normalization constant (ANC) A_{∞}
- general prefactor is polynomial in $1/\kappa L$ SK et al., PRL 107 112001 (2011); Annals Phys. 327, 1450 (2012)


Bound-state volume dependence


ullet finite volume affects the binding energy of states: $E_B o E_B(L)$

$$\Delta E_B(L) \sim -|A_\infty|^2 ext{exp}ig(-\kappa Lig)/L + \cdots$$
 , $oldsymbol{A}_\infty = ext{ANC}$


Lüscher, Commun. Math. Phys. 104 177 (1986); ...

- infinite-volume properties determine volume dependence
- SK + Lee, PLB **779** 9 (2018)
- lacktriangleright binding momentum $\kappa=\kappa_{A|N-A}=\sqrt{2\mu_{A|N-A}(B_N\!-\!B_A\!-\!B_{N-A})}$

- lacktriangle asymptotic normalization constant (ANC) A_{∞}
- ullet general prefactor is polynomial in $1/\kappa L$ SK et al., PRL 107 112001 (2011); Annals Phys. 327, 1450 (2012)
- ANCs describe the bound-state wave function at large distances
 - ► important input quantities for reaction calculations

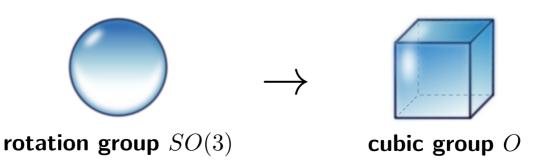
Low-energy capture reactions

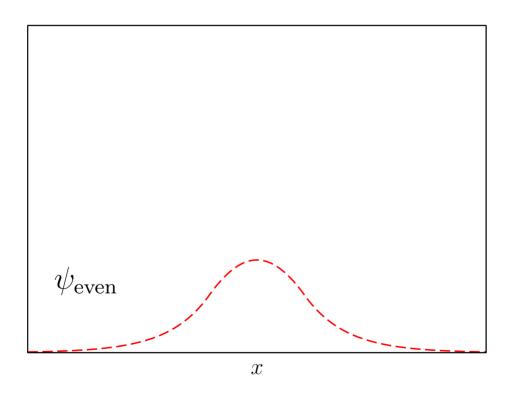
•
$$p + {}^{9}\mathrm{Be} \rightarrow {}^{10}\mathrm{B} + \gamma$$

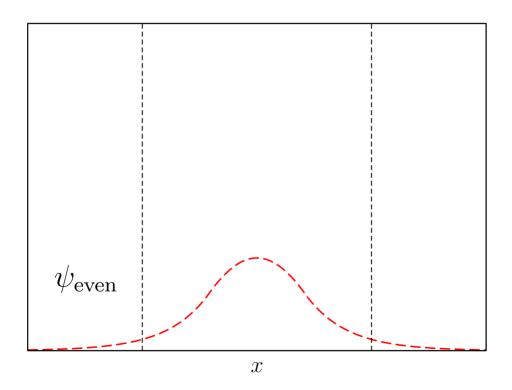
Wulf et al., PRC **58** 517 (1998)

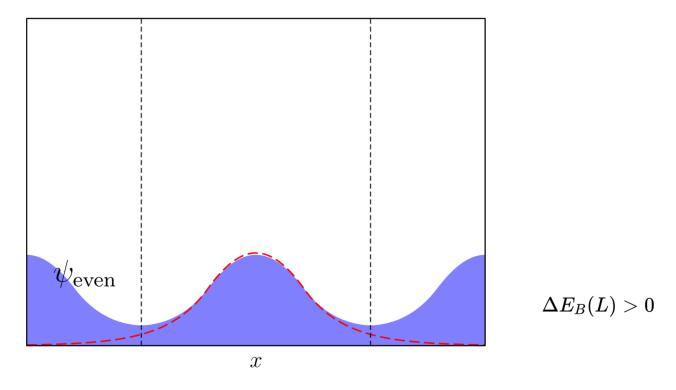
•
$$\alpha + {}^{12}\text{C} \rightarrow {}^{16}\text{O}^* + \gamma$$

deBoer et al., RMP 89 035007 (2017), ...
 SK et al., JPG 40 045106 (2013)

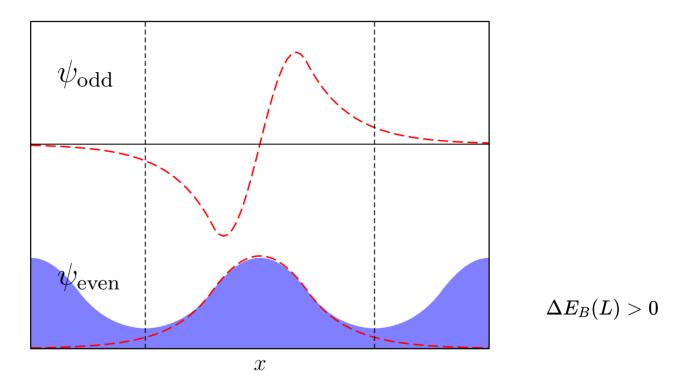

Higher partial waves

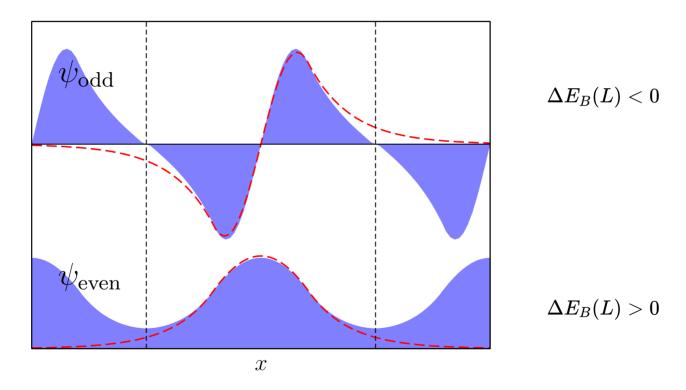

ullet general result: $\Delta E(L) = lpha\left(rac{1}{\kappa L}
ight) imes |A_{\infty}|^2 rac{\mathrm{e}^{-\kappa L}}{\mu L} + \mathcal{O}\!\left(\mathrm{e}^{-\sqrt{2}\kappa L}
ight)$


ℓ	$\mid \Gamma \mid$	$\alpha(x)$
0	A_1^+	-3
1	T_1^-	+3
2	T_2^+	$30x + 135x^2 + 315x^3 + 315x^4$
2	$\mid E^{+} \mid$	$-1/2 \left(15 + 90x + 405x^2 + 945x^3 + 945x^4\right)$


SK et al., PRL **107** 112001 (2011); Annals Phys. **327**, 1450 (2012)

- ullet prefactor for any bound state is polynomial in $1/(\kappa L)$
- depends in general on irreducible representation of the cubic group





even parity \rightarrow WF profile relaxed \rightarrow less curvarture \rightsquigarrow more deeply bound

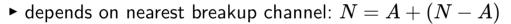
even parity \rightarrow WF profile relaxed \rightarrow less curvarture \rightsquigarrow more deeply bound

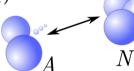
odd parity \rightarrow WF profile compressed \rightarrow more curvarture \rightsquigarrow less deeply bound

even parity \rightarrow WF profile relaxed \rightarrow less curvarture \rightsquigarrow more deeply bound

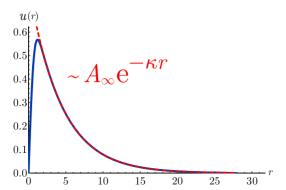
Charged-particle systems

Most nuclear systems involve multiple charged particles!


Bound-state volume dependence


finite volume affects the binding energy of states: $E_B o E_B(L)$

$$\Delta E_B(L) \sim -|A_\infty|^2 ext{exp}ig(-\kappa Lig)/L + \cdots$$
 , $oldsymbol{A}_\infty = ext{ANC}$


Lüscher, Commun. Math. Phys. 104 177 (1986); ...

- infinite-volume properties determine volume dependence
- ullet binding momentum $\kappa=\kappa_{A|N-A}=\sqrt{2\mu_{A|N-A}(B_N{-}B_A{-}B_{N-A})}$

- ightharpoonup asymptotic normalization constant (ANC) A_{∞}
- general prefactor is polynomial in $1/\kappa L$ SK et al., PRL 107 112001 (2011); Annals Phys. 327, 1450 (2012)
- ANCs describe the bound-state wave function at large distances
 - ▶ important input quantities for reaction calculations

Low-energy capture reactions

- $p+{}^9{
 m Be}
 ightarrow{}^{10}{
 m B}+\gamma$ Wulf et al., PRC **58** 517 (1998) $lpha+{}^{12}{
 m C}
 ightarrow{}^{16}{
 m O}^*+\gamma$
- deBoer et al., RMP **89** 035007 (2017), ... SK et al., JPG 40 045106 (2013)

Charged-particle systems

Most nuclear systems involve multiple charged particles!

Charged-particle systems

Most nuclear systems involve multiple charged particles!

nonrelativistic description with short-range interaction + long-range Coulomb force

$$H = H_0 + V + rac{V_C}{r} \, , \; V_C(r) = rac{\gamma}{r} = rac{2\mu lpha Z_1 Z_2}{r} \, .$$

• charged bound-state wavefunctions have Whittaker tails:

$$\psi_{\infty}(r) \sim W_{-ar{\eta},rac{1}{2}}(2\kappa r)/r \sim rac{\mathrm{e}^{-\kappa r}}{(\kappa r)^{ar{\eta}}}$$

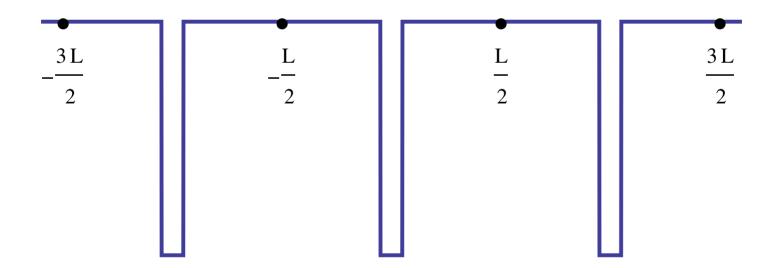
- ▶ these govern the asymptotic volume dependence
- ► additional suppression at large distances
- lacktriangle depends on Coulomb strength: $ar{\eta} = \gamma/(2\kappa)$
- for $\alpha \alpha$ system: $\gamma \approx 0.55 \ \mathrm{fm}^{-1}$
- details worked out by graduate student Hang Yu

Yu, Lee, SK, PRL **131** 212502 (2023)

Coulomb = $exp \rightarrow Whittaker function$?

Coulomb = exp → Whittaker function?

Yes, but not quite so simple...

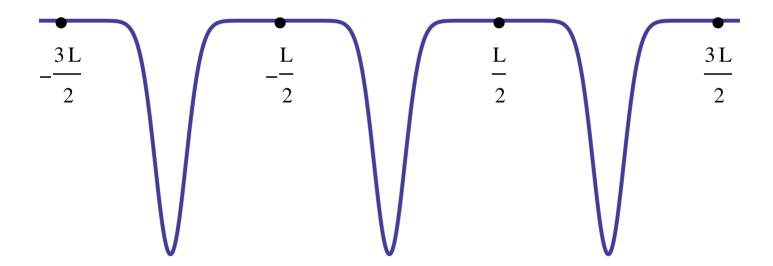

- ullet short-range interaction easy to extend periodically: $V_L({f r}) = \sum_{f n} V({f r} + {f n} L)$
 - lacktriangleright trivial for finite-range potental V
 - ightharpoonup converging sum, negligible corrections for V falling faster than power law

Periodic short-range potentials

• implement periodic boundary condition via shifted potentials copies:

$$V_L(\mathbf{r}) = \sum_{\mathbf{n} \in \mathbb{Z}^3} V(\mathbf{r} + \mathbf{n}L)$$

ullet necessary condition for this: $R=\mathrm{range}(V)\ll L$

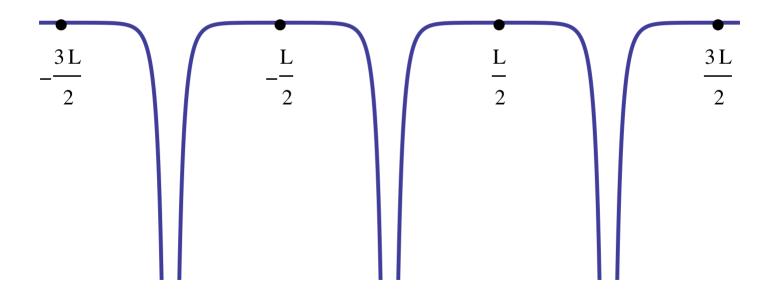


Periodic short-range potentials

• implement periodic boundary condition via shifted potentials copies:

$$V_L(\mathbf{r}) = \sum_{\mathbf{n} \in \mathbb{Z}^3} V(\mathbf{r} + \mathbf{n}L)$$

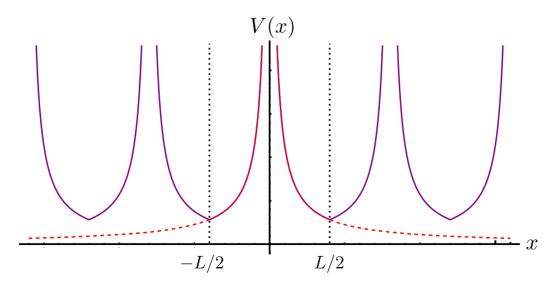
ullet necessary condition for this: $R=\mathrm{range}(V)\ll L$



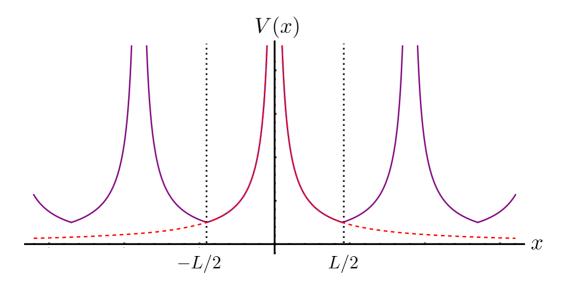
Periodic short-range potentials

• implement periodic boundary condition via shifted potentials copies:

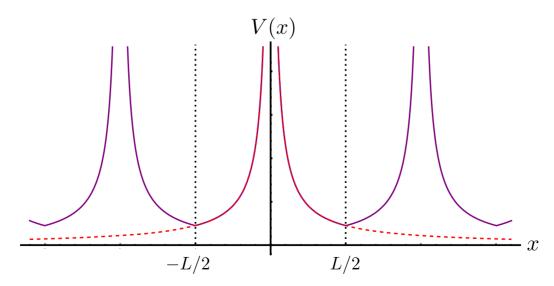
$$V_L(\mathbf{r}) = \sum_{\mathbf{n} \in \mathbb{Z}^3} V(\mathbf{r} + \mathbf{n}L)$$


ullet necessary condition for this: $R=\mathrm{range}(V)\ll L$

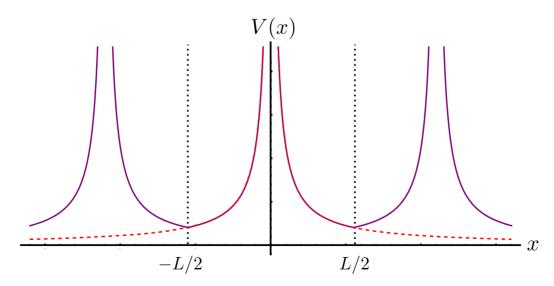
- ullet short-range interaction easy to extend periodically: $V_L({f r}) = \sum_{f n} V({f r} + {f n} L)$
 - lacktriangle trivial for finite-range potental V
 - ightharpoonup converging sum, negligible corrections for V falling faster than power law
- not possible for Coulomb potential with infinite range!


- ullet short-range interaction easy to extend periodically: $V_L({f r}) = \sum_{f n} V({f r}+{f n}L)$
 - lacktriangle trivial for finite-range potental V
 - ightharpoonup converging sum, negligible corrections for V falling faster than power law
- not possible for Coulomb potential with infinite range!

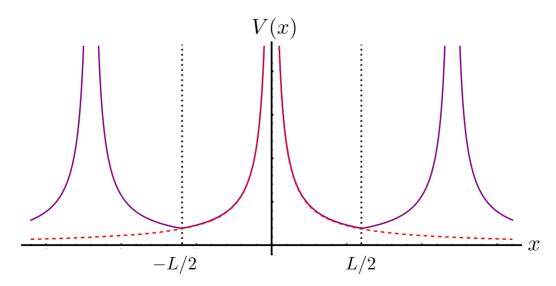
- ullet cut off at box boundary, grow Coulomb tail with L
- nicely matches practical implementation (e.g. in Lattice EFT)


- ullet short-range interaction easy to extend periodically: $V_L({f r}) = \sum_{f n} V({f r}+{f n}L)$
 - ightharpoonup trivial for finite-range potental V
 - ightharpoonup converging sum, negligible corrections for V falling faster than power law
- not possible for Coulomb potential with infinite range!

- ullet cut off at box boundary, grow Coulomb tail with L
- nicely matches practical implementation (e.g. in Lattice EFT)

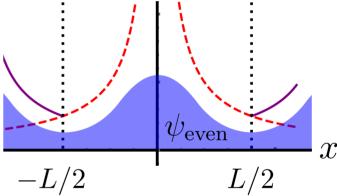

- ullet short-range interaction easy to extend periodically: $V_L({f r}) = \sum_{f n} V({f r}+{f n}L)$
 - lacktriangle trivial for finite-range potental V
 - ightharpoonup converging sum, negligible corrections for V falling faster than power law
- not possible for Coulomb potential with infinite range!

- ullet cut off at box boundary, grow Coulomb tail with L
- nicely matches practical implementation (e.g. in Lattice EFT)


- ullet short-range interaction easy to extend periodically: $V_L({f r}) = \sum_{f n} V({f r}+{f n}L)$
 - lacktriangle trivial for finite-range potental V
 - ightharpoonup converging sum, negligible corrections for V falling faster than power law
- not possible for Coulomb potential with infinite range!

- ullet cut off at box boundary, grow Coulomb tail with L
- nicely matches practical implementation (e.g. in Lattice EFT)

- ullet short-range interaction easy to extend periodically: $V_L({f r}) = \sum_{f n} V({f r}+{f n}L)$
 - ightharpoonup trivial for finite-range potental V
 - ightharpoonup converging sum, negligible corrections for V falling faster than power law
- not possible for Coulomb potential with infinite range!


- ullet cut off at box boundary, grow Coulomb tail with L
- nicely matches practical implementation (e.g. in Lattice EFT)

Exact result in one dimension

- exact form in one spatial dimension can be found from boundary condition
- ullet derivative of wavefunction needs to vanish at boundary: $\psi_\kappa'(L/2)=0$
- ullet for fixed L this determines the binding momentum $\kappa=\kappa(L)$
 - ▶ linear combination of Jost functions
 - ► ANC from S-matrix residue

 Fäldt+Wilkin, Phys. Scr. **56** 566 (1997)
 - $\Delta E(L) = 2\kappa \Delta \kappa(L)$

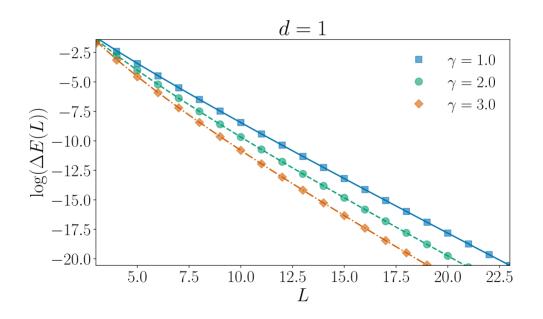
$$\Delta E(L) = -rac{\kappa}{\mu}A_{\infty}^2\mathrm{e}^{\mathrm{i}\piar{\eta}}rac{W'_{-ar{\eta},rac{1}{2}}(\kappa L)}{W'_{ar{\eta},rac{1}{\kappa}}(-\kappa L)} + \mathcal{O}\left[\mathrm{e}^{-2\kappa L}
ight] \qquad \qquad (\mathrm{1D,\,even\,\,parity})$$

- seemingly complex phase cancels against Whittaker functions ✓
- ullet reduces to simple exponential for $\gamma o 0$ (no Coulomb) \checkmark

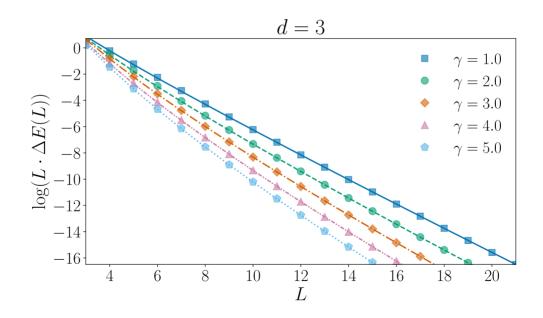
Charged-particle volume dependence

- three-dimensional derivation is complicated due to nontrival boundary condition
 - ▶ can be done with two-step procedure based on formal perturbation theory
 - ▶ intricate details worked out by Hang Yu
 - ightharpoonup ightharpoonup leading result for S-wave states (cubic A_1^+ representation)

$$\Delta E(L) = \underbrace{-rac{3A_{\infty}^2}{\mu L}igg[W_{-ar{\eta},rac{1}{2}}'(\kappa L)igg]^2}_{\equiv \Delta E_0(L)} + \Delta ilde{E}(L) + \Delta ilde{E}'(L) + \mathcal{O}\left[\mathrm{e}^{-\sqrt{2}\kappa L}
ight] \qquad \qquad (3\mathrm{D},A_1^+)$$


Correction terms

- in addition to exponentially suppressed corrections, there are two other terms
- ullet these arise from the Coulomb potential and vanish for $\gamma o 0$
- the perturbative approach makes it possible to derive their behavior


$$\Delta ilde{E}(L), \Delta ilde{E}'(L) = \mathcal{O}\left(rac{ar{\eta}}{(\kappa L)^2}
ight) imes \Delta E_0(L)$$

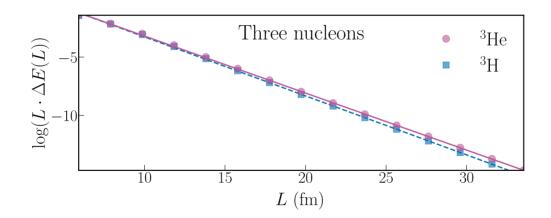
Yu, Lee, SK, PRL 131 212502 (2023)

- the relations can be checked with explicit numerical calculations
- simple lattice discretization with attrative Gaussian potentials
- the Coulomb singularity at the origin is also regularized: $V_{C,
 m Gauss}(r) \sim rac{1-{
 m e}^{-r^2/R_C^2}}{r^2}$
 - ▶ this is equivalent to a redefinition of the short-range potential

- the relations can be checked with explicit numerical calculations
- simple lattice discretization with attrative Gaussian potentials
- the Coulomb singularity at the origin is also regularized: $V_{C,
 m Gauss}(r) \sim rac{1-{
 m e}^{-r^2/R_C^2}}{r^2}$
 - ▶ this is equivalent to a redefinition of the short-range potential

- the relations can be checked with explicit numerical calculations
- simple lattice discretization with attrative Gaussian potentials
- ullet the Coulomb singularity at the origin is also regularized: $V_{C, {
 m Gauss}}(r) \sim rac{1-{
 m e}^{-r^2/R_C^2}}{r^2}$
 - ► this is equivalent to a redefinition of the short-range potential

	Finite-volume fit			Continuum result					
γ	κ_{∞}	A_{∞}	L range	κ_{∞}	A_{∞}				
d = 1									
1.0	0.861110(3)	2.1286(1)	$12 \sim 24$	0.860	2.1284				
2.0	0.861125(9)	4.4740(9)	$12 \sim 23$	0.860	4.4782				
3.0	0.86108(6)	10.386(2)	$12 \sim 20$	0.858	10.435				
d=3									
1.0	0.8610(3)	5.039(2)	$17 \sim 28$	0.861	5.049				
2.0	0.8607(3)	11.71(4)	$15 \sim 26$	0.860	11.79				
3.0	0.8605(7)	29.95(20)	$14 \sim 24$	0.859	30.31				
4.0	0.8604(1)	83.14(10)	$14 \sim 22$	0.858	84.76				
5.0	0.8604(2)	247.9(5)	$14 \sim 18$	0.857	255.4				


- the relations can be checked with explicit numerical calculations
- simple lattice discretization with attrative Gaussian potentials
- ullet the Coulomb singularity at the origin is also regularized: $V_{C,
 m Gauss}(r) \sim rac{1-{
 m e}^{-r^2/R_C^2}}{r^2}$
 - ▶ this is equivalent to a redefinition of the short-range potential

	Finite-volume fit			Continuum result	
γ	κ_{∞}	A_{∞}	L range	κ_{∞}	A_{∞}
1.0	0.861110(3)	2.1286(1)	$12 \sim 24$	0.860	2.1284
2.0	0.861125(9)	4.4740(9)	$12 \sim 23$	0.860	4.4782
3.0	0.86108(6)	10.386(2)	$12 \sim 20$	0.858	10.435
1.0	0.8610(3)	5.039(2)	$17 \sim 28$	0.861	5.049
2.0	0.8607(3)	11.71(4)	$15 \sim 26$	0.860	11.79
3.0	0.8605(7)	29.95(20)	$14 \sim 24$	0.859	30.31
4.0	0.8604(1)	83.14(10)	$14 \sim 22$	0.858	84.76
5.0	0.8604(2)	247.9(5)	$14 \sim 18$	0.857	255.4

- excellent agreement with direct continuum calculations
 - ▶ obtained by solving the radial Schrödinger equation

Three-nucleon system: ³He vs. ³H

- consider pionless EFT with SU(4) symmetric contact interaction
- parameters tuned in infinite volume (very large box)
 - ► two-body interaction to produce 1 MeV deuteron
 - ► three-body interaction to produce physical triton
 - ightharpoonup and short-range pp counterterm to also produce physical $^3{\rm He}$

- ullet extract proton-deuteron ANC as $A_{\infty}=1.44(1)\,\mathrm{fm}^{-1/2}$
- would be off by 5% with pure short-range volume dependence fit
 - ullet significant effect given that Coulomb strengh $\gamma \sim 0.05\,\mathrm{fm}^{-1}$ is pretty small here!

Resonances

Klos, SK et al., PRC 98 034004 (2018)

Dietz, SK et al., PRC 105 064002 (2022)

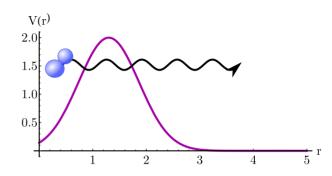
Yapa, SK, PRC 106 014309 (2022)

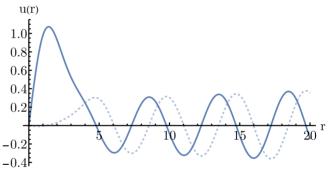
Yu, Yapa, SK, PRC 109 014316 (2024)

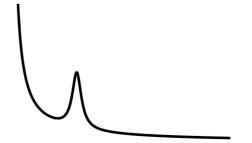
Resonances

Intuitive

- metastable state (finite lifetime)
- tunneling through potential barrier

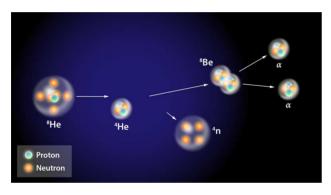

Formally

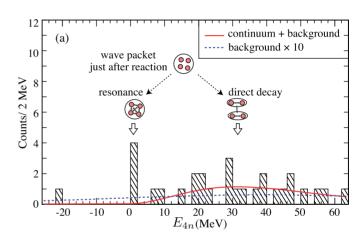

- S-matrix pole at complex energy
- wavefunction similar to bound state...
- ...but not quite normalizable



- enhancement in cross section
- related to sharp jump in scattering phase shift

$$ullet \ \sigma \sim rac{1}{(E-E_R)^2 + \Gamma^2/4}$$

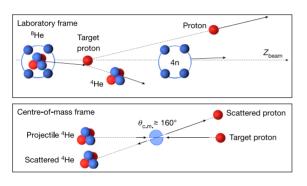




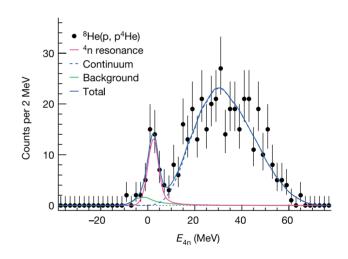
Tetraneutron situation (I)

Observation at RIKEN (2016)

APS/Alan Stonebraker

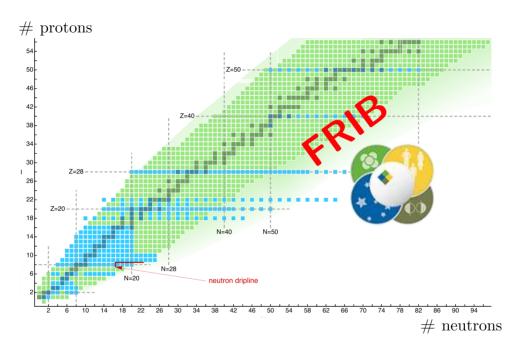


Kisamori et al., PRL 116 052501 (2016)


- double-charge exchange reaction
- excess of near threshold events hints at possible resonance
- motivated follow-up experiment

Tetraneutron situation (II)

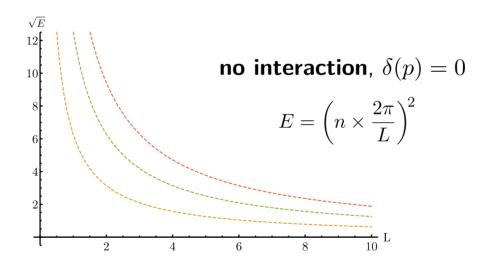
Observation at RIKEN (2022)


Duer et al., Nature 606 678 (2022)

- knockout reaction: scattering ⁸He beam off proton target
- clear peak with resonance shape around 2 MeV
- theory suggests alternative explanations (time delay, phase space + FSI)

Higgins et al., PRC 103 024004 (2021), Lazauskas et al., PRL 130 102501 (2023)

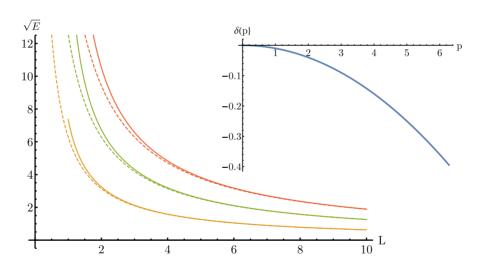
More exotic nuclei


original chart: Hergert et al., Phys. Rep. 621 165 (2016)

- FRIB will discover a host of unknown nuclei near the edge of stability
 - ▶ among those there are likely exotic states
 - ► halos, clusters → few-body resonances

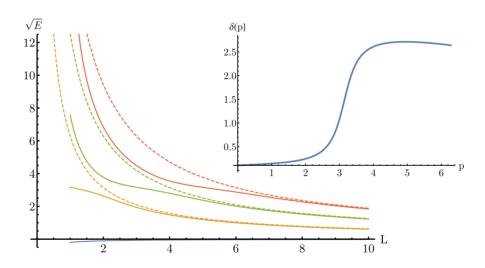
Lüscher formalism

- ullet finite volume o discrete energy levels o $p\cot\delta_0(p)=rac{1}{\pi L}S(E(L))$ o phase shift
- resonance contribution ↔ avoided level crossing


Lüscher, NPB **354** 531 (1991); ... Wiese, NPB (Proc. Suppl.) **9** 609 (1989); ...

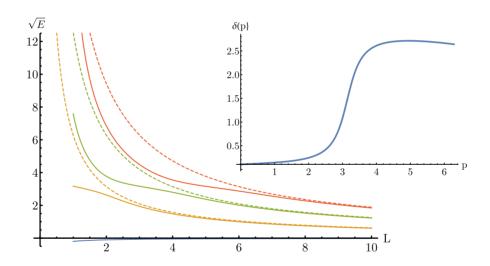
Lüscher formalism

- ullet finite volume o discrete energy levels o $p\cot\delta_0(p)=rac{1}{\pi L}S(E(L))$ o phase shift
- resonance contribution ↔ avoided level crossing


Lüscher, NPB **354** 531 (1991); ... Wiese, NPB (Proc. Suppl.) **9** 609 (1989); ...

Lüscher formalism

- ullet finite volume o discrete energy levels o $p\cot\delta_0(p)=rac{1}{\pi L}S(E(L))$ o phase shift
- resonance contribution ↔ avoided level crossing


Lüscher, NPB **354** 531 (1991); ... Wiese, NPB (Proc. Suppl.) **9** 609 (1989); ...

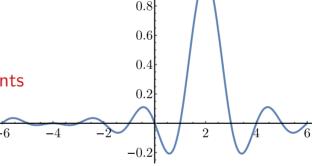
Lüscher formalism

- ullet finite volume o discrete energy levels o $p\cot\delta_0(p)=rac{1}{\pi L}S(E(L))$ o phase shift
- resonance contribution ↔ avoided level crossing

```
Lüscher, NPB 354 531 (1991); ...
Wiese, NPB (Proc. Suppl.) 9 609 (1989); ...
```


• direct correspondence between phase-shift jump and avoided crossing only for twobody systems, but the **spectrum signature carries over to few-body systems**

Klos, SK et al., PRC 98 034004 (2018)


Discrete variable representation

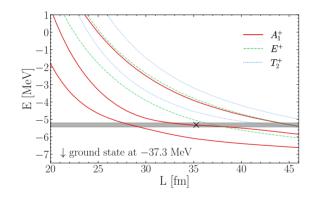
Need calculation of several few-body energy levels

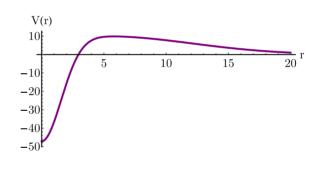
use a Discrete Variable Representation (DVR)

well established in quantum chemistry, suggested for nuclear physics by Bulgac+Forbes, PRC 87 051301 (2013)

- basis functions localized at grid points
- potential energy matrix diagonal
- kinetic energy matrix very sparse
 - ▶ precalculate only 1D matrix elements

- periodic boundary condistions ↔ plane waves as starting point
- efficient implementation for large-scale calculations
 - ► handle arbitrary number of particles (and spatial dimensions)
 - ▶ numerical framework scales from laptop to HPC clusters Klos, SK et al., PRC 98 034004 (2018)
 - ► recent extensions: GPU acceleration, separable interactions


Dietz, SK et al., PRC 105 064002 (2022); SK, arXiv:2211.00395 [nucl-th]

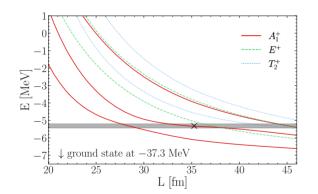

Three-body calculations

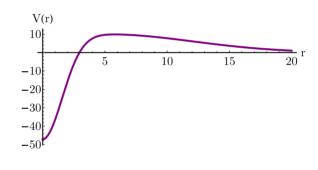
1. established three-body resonance from literature

Fedorov et al., Few-Body Syst. 33 153 (2003); Blandon et al., PRA 75 042508 (2007)

- ullet three bosons with mass m=939.0 MeV, potential = sum of two Gaussians
- ullet three-body resonance at -5.31-i0.12 MeV (Blandon et al.)

• fit inflection point(s) to extract resonance energy: $E_R = -5.32(1)$ MeV


Klos, SK et al., PRC 98 034004 (2018)


Three-body calculations

1. established three-body resonance from literature

Fedorov et al., Few-Body Syst. 33 153 (2003); Blandon et al., PRA 75 042508 (2007)

- ullet three bosons with mass m=939.0 MeV, potential = sum of two Gaussians
- ullet three-body resonance at -5.31-i0.12 MeV (Blandon et al.)

ullet fit inflection point(s) to extract resonance energy: $E_R=-5.32(1)$ MeV

Klos, SK et al., PRC 98 034004 (2018)

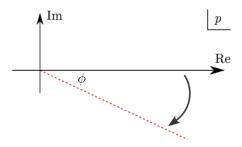
2. three-neutron system studied in pionless EFT

- apply the same method to a simple neutron-neutron contact interaction
- no sign of a resonance in this system

Dietz, SK et al., PRC 105 064002 (2022)

Four-neutron calculations not yet fully conclusive...

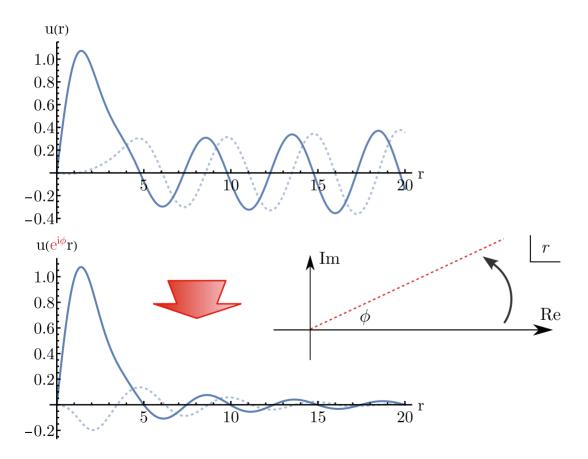
- requires calculations in very large boxes → numerically expensive!
- enabled by finite-volume eigenvector continuation... N. Yapa, SK, PRC 106 014309 (2022)
- ...but still not quite sufficiently converged


More formal look at resonances

- in stationary scattering theory, resonances are described as generalized eigenstates
 - ullet S-matrix poles at comples energies $E=E_R-\mathrm{i}\Gamma/2$ (lifetime $\sim 1/\Gamma$)
 - ightharpoonup wave functions are not normalizable (exponentially growing in r-space)

Complex scaling method

one way to circumvent this problem is the complex scaling method:

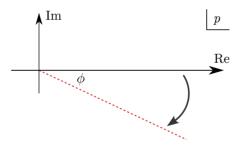

$$r
ightarrow \mathrm{e}^{\mathrm{i}\phi} r \;\;\; , \;\;\; p
ightarrow \mathrm{e}^{-\mathrm{i}\phi} p$$

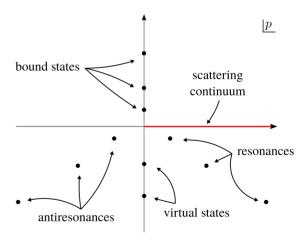
Complex-scaled resonance wave functions

• complex scaling suppresses the exponentially growing tail of the wave function

calculations by Nuwan Yapa

More formal look at resonances

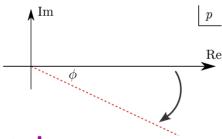

- in stationary scattering theory, resonances are described as generalized eigenstates
 - ullet S-matrix poles at comples energies $E=E_R-\mathrm{i}\Gamma/2$ (lifetime $\sim 1/\Gamma$)
 - ightharpoonup wave functions are not normalizable (exponentially growing in r-space)

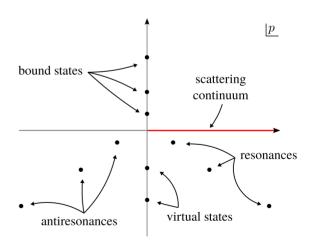

Complex scaling method

• one way to circumvent this problem is the complex scaling method:

$$r
ightarrow \mathrm{e}^{\mathrm{i}\phi} r \;\;\; , \;\;\; p
ightarrow \mathrm{e}^{-\mathrm{i}\phi} p$$

→ "reveals" the resonance regime

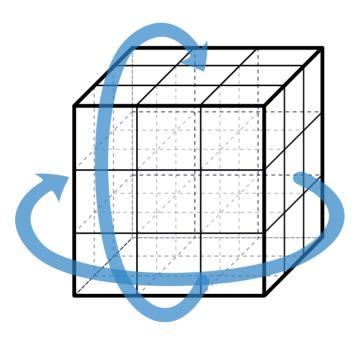

More formal look at resonances


- in stationary scattering theory, resonances are described as generalized eigenstates
 - ullet S-matrix poles at comples energies $E=E_R-\mathrm{i}\Gamma/2$ (lifetime $\sim 1/\Gamma$)
 - ightharpoonup wave functions are not normalizable (exponentially growing in r-space)

Complex scaling method

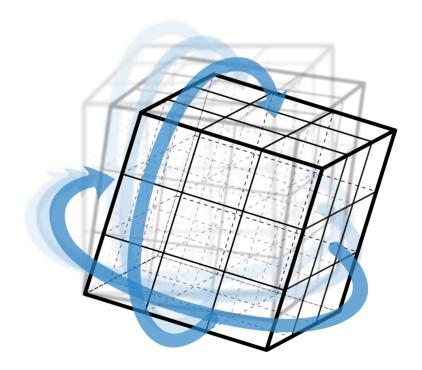
one way to circumvent this problem is the complex scaling method:

$$r
ightarrow \mathrm{e}^{\mathrm{i}\phi} r \;\;\; , \;\;\; p
ightarrow \mathrm{e}^{-\mathrm{i}\phi} p$$


Advertisement

- as the interaction changes, bound states can evolve into resonances
- resonance eigenvector continuation enables extrapolations along such trajectories

Yapa, SK, Fossez, PRC 107 064316 (2023)


Back to the box

Consider again the peridioc boundary condition...

Back to the box

Consider again the peridioc boundary condition...

...but now in terms of complex-scaled coordinates!

Complex scaling in finite volume

Key idea

Yu, Yapa, SK, PRC 109 014316 (2024)

• put system into a box, apply peridioc boundary condition along rotated axes

Complex scaling in finite volume

Key idea

Yu, Yapa, SK, PRC 109 014316 (2024)

put system into a box, apply peridioc boundary condition along rotated axes

Volume dependence

- resonances, like bound states, correspond to isolated S-matrix poles
- complex scaling renders their wave functions normalizable
- we can adapt bound-state techniques to derive their volume dependence

$$\Delta E(L) = rac{3A_{\infty}^2}{\mu\zeta L} \Bigg[rac{\exp(\mathrm{i}\zeta p_{\infty}L)}{2} + \sqrt{2}\exp(\mathrm{i}\sqrt{2}\zeta p_{\infty}L) + rac{4\exp(\mathrm{i}\zeta\sqrt{3}p_{\infty}L)}{3\sqrt{3}L} \Bigg] + \mathcal{O}\left(\mathrm{e}^{\mathrm{i}2\zeta p_{\infty}L}
ight)$$

- ullet in this equation $\zeta=\mathrm{e}^{\mathrm{i}\phi}$, $p_{\infty}=\sqrt{2\mu E(\infty)}$
- explicit form for leading term (LO) and subleading corrections (NLO)
- ullet $\,$ **note:** dependence on volume L and complex-scaling angle ϕ

Complex scaling in finite volume

Key idea

Yu, Yapa, SK, PRC 109 014316 (2024)

put system into a box, apply peridioc boundary condition along rotated axes

Volume dependence

- resonances, like bound states, correspond to isolated S-matrix poles
- complex scaling renders their wave functions normalizable
- we can adapt bound-state techniques to derive their volume dependence

$$\Delta E(L) = rac{3A_{\infty}^2}{\mu\zeta L} \Bigg[rac{\exp(\mathrm{i}\zeta p_{\infty}L) + \sqrt{2} \exp(\mathrm{i}\sqrt{2}\zeta p_{\infty}L) + rac{4\exp(\mathrm{i}\zeta\sqrt{3}p_{\infty}L)}{3\sqrt{3}L}} \Bigg] + \mathcal{O}\left(\mathrm{e}^{\mathrm{i}2\zeta p_{\infty}L}
ight)$$

- ullet in this equation $\zeta=\mathrm{e}^{\mathrm{i}\phi}$, $p_{\infty}=\sqrt{2\mu E(\infty)}$
- explicit form for leading term (LO) and subleading corrections (NLO)
- ullet note: dependence on volume L and complex-scaling angle ϕ

Numerical implementation

ullet DVR method can be adapted to this scenario (scaling of $x,y,z \leadsto$ scaling of r)

Derivation

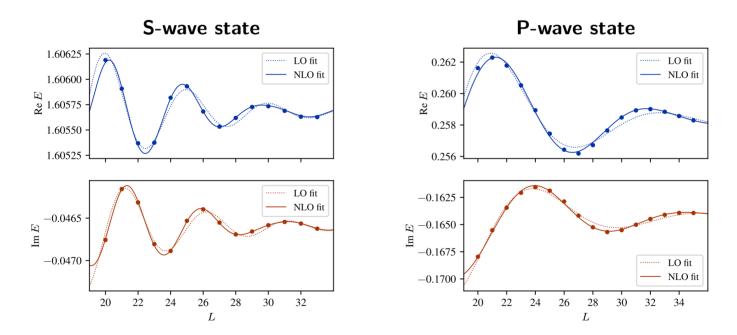
Leading-order expression

- possible to work with wave functions after complex scaling
 - ▶ derivation proceeds analogous to bound-state case
- based on ansatz for periodic finite-volume resonance wave function

$$\psi_{\zeta L,0}(x) = \sum_{n=-\infty}^{\infty} \psi_{\infty}(\zeta x + \zeta nL)$$
 (1D)

- ullet energy shift $\sim \langle \psi_{\zeta L,0} | \eta
 angle$ with $| \eta
 angle = \sum_n \sum_{n'
 eq n} V(\zeta x + \zeta n L) \psi_\infty(\zeta x + z n L)$
 - ▶ note: no complex conjugation for bra states (c-product)

Subleading corrections

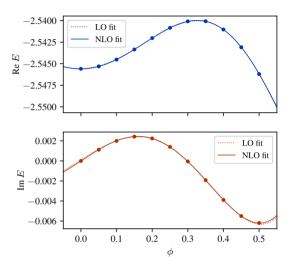

- ullet easiest to derive directly from quantization condition: $K_0(p)=rac{\sqrt{4\pi}}{\pi L}\mathcal{Z}_{00}(1;q^2)$
- analytic continuation based on complex-scaled finite-volume Green's function

$$G_{\zeta L}(\zeta {f r}, E) = \zeta G_L({f r}, \zeta^2 E)$$

► see paper for details Yu, Yapa, SK, PRC 109 014316 (2024)

Resonance examples

- two-body calculations are in excellent agreement with derived volume dependence
 - ► S-wave resonance generated via explicit barrier
 - ▶ P-wave resonance from purely attractive potential

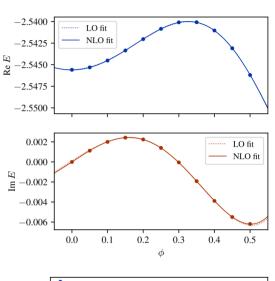


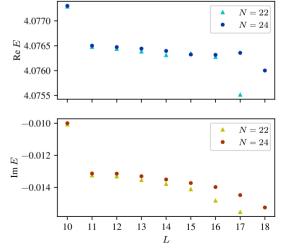
ullet fitting the $oldsymbol{L}$ dependence yields physical resonance position and lifetime!

More applications

Single-volume bound-state fitting

- bound-state energies normally remain real under complex scaling (strictly true in infinite volume)
- the finite-volume, however, induces a non-zero imaginary part
- Re E and Im E oscillate as a function of L
 ▶ and also as a function of φ
- ullet possible to fit ϕ dependence at fixed volume!


More applications


Single-volume bound-state fitting

- bound-state energies normally remain real under complex scaling (strictly true in infinite volume)
- the finite-volume, however, induces a non-zero imaginary part
- Re E and Im E oscillate as a function of L
 ▶ and also as a function of φ
- ullet possible to fit ϕ dependence at fixed volume!

Three-body resonance

- the exact volume dependence is only known for two-body system
- the complex scaled FV-DVR can however be used to study more particles
- three-boson example in decent agreement with previous avoided-crossings analysis

Summary

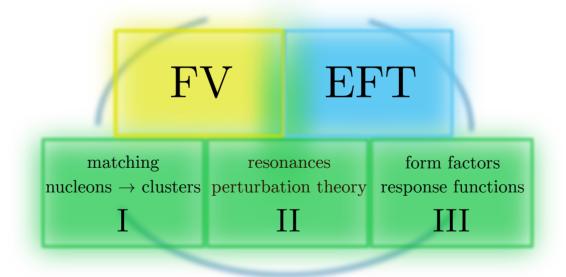
Bound states

- wave function at large distances determines finite-volume energy shift
 - ▶ possible to extract asymptotic normalization coefficients
- volume dependence is known for arbitrary angular momentum and cluster states
- infinite-range Coulomb force complicates derivation
 - ▶ leading volume dependence derived for S-wave states

Summary

Bound states

- wave function at large distances determines finite-volume energy shift
 - possible to extract asymptotic normalization coefficients
- volume dependence is known for arbitrary angular momentum and cluster states
- infinite-range Coulomb force complicates derivation
 - ► leading volume dependence derived for S-wave states


Resonances

- DVR method can handle few-nucleon EFT calculations in large boxes
- pionless EFT excludes a low-energy three-neutron resonance
- four-neutron calculations possible with more recent developments
 - ▶ but still too difficult to converge to be fully conclusive
- complex scaling method can be implemented in finite volume
 - ▶ gives direct access to resonance positions and lifetimes
 - ▶ leading volume dependence derived for two-cluster resonances

Outlook

Finite-volume research program

- simulations of quantum systems in Finite Volume (FV) can be used to elegantly extract physical properties
- **Effective Field Theory (EFT)** provides a model-independent descriptions of nuclear interactions
- the combination of these two concepts can be used to study a number of questions

- binding energy volume dependence is governed by asymptotic tails
- other observables can be more sensitive to details of the wave function
- simplest example: mean squared radius

$$\langle r^2
angle (L) = rac{1}{2} rac{\left< \psi_L ig| {f r}^2 \chi_C({f r}) ig| \psi_L
ight>}{\left< \psi_L ig| \chi_C({f r}) ig| \psi_L
ight>} = \left< r_\infty^2
ight> + \Delta \langle r^2
angle (L)$$

- $ightharpoonup |\psi_L
 angle$ is the periodic state at volume L
- χ_C projects onto the central box
- ullet $\Delta \langle r^2
 angle (L)$ has been worked out by undergraduate student Anderson Taurence
 - ► explicit expressions for S- and P-wave states, e.g.:

 Taurence + SK, arXiv:2401.00107 [nucl-th]

$$egin{align} \Delta \langle r^2
angle_0^{A_1^+}(L) = \ & |A_\infty|^2 \mathrm{e}^{-\kappa L} \left(rac{L^2}{2\kappa} + rac{3\left(1 - 4\kappa^2 \langle r_\infty^2
angle
ight)}{4\kappa^3} + rac{a}{\kappa^4 L}
ight) \ & + rac{3}{8} |\gamma|^2 L^3 \, \mathrm{Ei}(-\kappa L) + \mathcal{O}(\mathrm{e}^{-\sqrt{2}\kappa L}) \end{aligned} \tag{1}$$

Naive expectation

- typically, more tightly bound states tend to be smaller spatially
- recall, FV energy shift positive for S-wave states, negative for P-wave states
 - ▶ in general, "leading parity" determines the sign of the energy shift
- based on this, one would expect a negative FV radius shift for S-wave states

Naive expectation

- typically, more tightly bound states tend to be smaller spatially
- recall, FV energy shift positive for S-wave states, negative for P-wave states
 - ▶ in general, "leading parity" determines the sign of the energy shift
- based on this, one would expect a negative FV radius shift for S-wave states

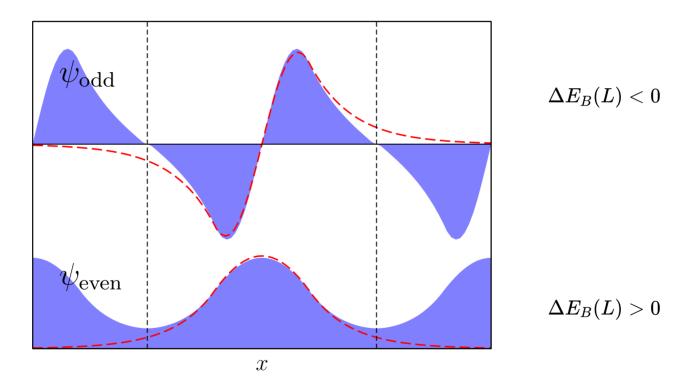
Actual behavior

- the explicit calculation however yields a positive shift for S-waves...
- ...and the opposite sign for P-wave states

Naive expectation

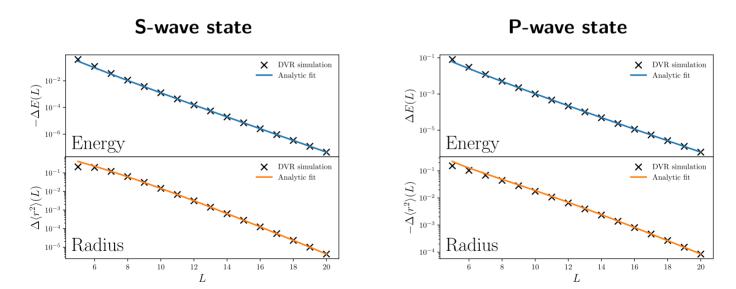
- typically, more tightly bound states tend to be smaller spatially
- recall, FV energy shift positive for S-wave states, negative for P-wave states
 - ▶ in general, "leading parity" determines the sign of the energy shift
- based on this, one would expect a negative FV radius shift for S-wave states

Actual behavior


- the explicit calculation however yields a positive shift for S-waves...
- ...and the opposite sign for P-wave states

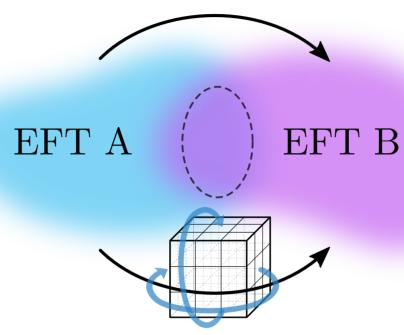
Explanation

- ullet the operator $\sim r^2$ emphasizes the large-distance behavior of the wave function
- the relaxed profile for even parity then yields a larger radius in FV


Sign of the energy shift

odd parity \rightarrow WF profile compressed \rightarrow more curvarture \rightsquigarrow less deeply bound

even parity \rightarrow WF profile relaxed \rightarrow less curvarture \rightsquigarrow more deeply bound


- consider again bound states generated by attractive Gaussian potentials
- calculate radius in finite volume, fit known functional form
 - ightharpoonup one-parameter radius fit when ANC and κ are extracted from energy fit

- radius fits work as well as energy fits
- extracted infinite-volume radii agree well with direct benchmark calculations

EFT matching

observables

finite-volume energy levels

- (E)FTs can be matched in their overlapping regime of applicability
 - ► "analytic continuation" of theories

recent application: Detmold+Shanahan, PRD 103 074503 (2021)

specifically, the Chiral EFT (Lattice) input can inform Halo/Cluster EFT (FV DVR)

Thanks...

...to my students and collaborators...

- H. Yu, N. Yapa, A. Taurence, A. Andis (NCSU)
- D. Lee (FRIB/MSU), K. Fossez (FSU)
- S. Dietz, H.-W. Hammer, A. Schwenk (TU Darmstadt)
- U.-G. Meißner (U Bonn)
- P. Klos, J. Lynn, S. Bour, ...

...for support, funding, and computing time...

- Jülich Supercomputing Center
- NCSU High-Performance Computing Services

Thanks...

...to my students and collaborators...

- H. Yu, N. Yapa, A. Taurence, A. Andis (NCSU)
- D. Lee (FRIB/MSU), K. Fossez (FSU)
- S. Dietz, H.-W. Hammer, A. Schwenk (TU Darmstadt)
- U.-G. Meißner (U Bonn)
- P. Klos, J. Lynn, S. Bour, ...

...for support, funding, and computing time...

- Jülich Supercomputing Center
- NCSU High-Performance Computing Services

...and to you, for your attention!