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• Heavy quark diffusion in the quark-gluon plasma and force-force 
correlators

• Heavy quarkonia in the quark-gluon plasma: open quantum systems 
and force-force correlators

• Force-force correlators, their similarities and differences

• in perturbation theory 

• on the lattice 

• in holography

In this talk
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Figure 4. Cut of a two loop diagram (left) corresponds to a 2 $ 2 scattering process (right).
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Figure 5. Two-loop diagram cut through a self-energy correction on the gluon, which corresponds
to scattering-induced photon radiation (crossings not shown)

significant spectral weight in this region. This leads to a distinct contributing kinematical

region which corresponds to scattering-induced emission, as shown in Fig. 5. We will call

these collinear processes or collinear splitting processes. Aurenche et al [20] first showed

that these processes are also leading order and can even be numerically dominant. The

reason is that the process includes a kinematical region in which the intermediate quark

line in Fig. 5 is nearly on the mass shell. But this near-singularity requires the inclusion

of self-energy corrections, which bring in additional diagrams by gauge invariance and the

necessity to correctly represent charge conservation. Therefore, in the kinematic region

where gluons are soft and spacelike (representing scattering processes), one must sum

over multiple gluon exchanges, such as the diagram of Fig. 6. The interference e↵ect this

generates and the associated suppression are called Landau-Pomeranchuk-Migdal (LPM)

e↵ect.

In [13], AMY showed that these two kinds of processes (elastic scattering when one

gluon is on-shell, scattering induced emission with any number of soft spacelike gluons) are

both needed in the calculation, but arise from kinematically distinct momentum regions.

Therefore the computation can be separated into a contribution from each process. The

easiest way to see that this is true is to consider the components of the o↵-shell fermion’s

momentum P , particularly the transverse component p? and the longitudinal component

p+. As illustrated in Fig. 7, the relevant momentum regions are quite distinct when viewed
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Heavy-quark diffusion



Heavy quark diffusion
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ALICE, JHEP0122 (2022)

Prompt D0, D+, and D∗+ RAA in Pb–Pb ALICE Collaboration
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Figure 7: Left panel: prompt D-meson RAA (average of D0, D+, and D∗+) as a function of pT measured in
Pb–Pb collisions at

√
sNN = 5.02 TeV (2018 data sample) in the 0–10% and 30–50% centrality classes compared

with published results in the 60–80% centrality class (2015 data sample) [30] and in p–Pb collisions at the
same centre-of-mass energy [33]. Statistical (bars), systematic (boxes), and normalisation (shaded box around
unity) uncertainties are shown. Right panel: prompt D-meson RAA in the 10% most central Pb–Pb collisions at
√

sNN = 5.02 TeV and 2.76 TeV [29] compared to the D0 RAA measured by the STAR collaboration in Au–Au
collisions at

√
sNN = 200 GeV [32].

integrated yield in Pb–Pb collisions reported above and the D0 production cross section measured in pp
collisions at

√
sNN = 5.02 TeV [37]. The results in the 0–10% and 30–50% centrality classes are:

R
prompt D0

AA (0–10%) = 0.689±0.054 (stat.)+0.104
−0.106 (syst.),

R
prompt D0

AA (30–50%) = 0.775±0.069 (stat.)+0.117
−0.120 (syst.).

(4)

Figure 8 shows the results obtained in Pb–Pb collisions compared with the nuclear modification factor
RpPb measured in p–Pb collisions at the same centre-of-mass energy [33]. The total charm cross
section is expected to scale with the number of binary collisions Ncoll, as introduced in Section 1,
and thus the RAA should be equal to one. However, the nuclear shadowing effect reduces the charm
production in Pb–Pb (and p–Pb ) collisions with respect to pp interactions. In addition, the possible
enhanced production of D+

s and Λ+
c due to the hadronisation via recombination is expected to further

decrease the fraction of charm quarks that hadronise into D0 mesons in Pb–Pb collisions compared to pp
collisions [25, 71–76]. The measured pT-integrated RAA is significantly below unity and this confirms
the suppression of the D0-meson yield in Pb–Pb collisions with respect to the binary-scaled pp reference
due to shadowing and the possible modifications in the hadronisation mechanism. Conversely, the pT-
integrated D0 RpPb is closer to unity, as expected from the smaller shadowing effects in p–Pb compared
to Pb–Pb collisions (where it affects the nucleons of both the projectile and the target nuclei). The
integrated RAA is also compared with perturbative QCD calculations of D0-meson production including
only initial-state effects modeled using two different sets of nuclear PDFs, namely nCTEQ15 [77–81] and
EPPS16 [82, 83]. The calculations with EPPS16 do not include the dependence of the shadowing on the
impact parameter of the Pb–Pb collision and therefore they are the same in the central and semicentral
event classes. The predictions with nCTEQ15 are obtained applying a Bayesian reweighting of the
nuclear PDFs, which is constrained by measurements of heavy-flavour production in p–Pb collisions at
the LHC [78], and are labelled as nCTEQ15rwHF in Fig. 8. They include a modelling of the centrality
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• Long story, see Pol-Bernard’s talk later for the many approaches, 
phenomenological implementations and consequences

• Main idea: rare, isolated heavy quarks undergoing diffusion 
(Brownian motion) in the quark-gluon plasma

Heavy quark diffusion, ab initio
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“contemplator enim, cum solis lumina cumque 
inserti fundunt radii per opaca domorum: 
multa minuta modis multis per inane videbis 
corpora misceri radiorum lumine in ipso 
et vel ut aeterno certamine proelia pugnas 
edere turmatim certantia nec dare pausam, 
conciliis et discidiis exercita crebris; 
conicere ut possis ex hoc, primordia rerum 
quale sit in magno iactari semper inani.”

"behold whenever the sun's light and the rays, let in, pour down
Across dark halls of houses: thou wilt see

The many mites in many a manner mixed
Amid a void in the very light of the rays,

And battling on, as in eternal strife,
And in battalions contending without halt,

In meetings, partings, harried up and down.
From this thou mayest conjecture of what sort

The ceaseless tossing of primordial seeds
Amid the mightier void.”

Lucretius, De Rerum Natura, II 110 (~55 BC)



• Long story, see Pol-Bernard’s talk later

• Main idea: rare, isolated heavy quarks undergoing diffusion 
(Brownian motion) in the quark-gluon plasma

• In the non-relativistic limit  Newton Langevin 
equation with a drag coefficient and a random force with  
and a momentum broadening coefficient 
 

·p = −ηDp+f(t)
⟨f(t)⟩ = 0

Svetitsky PRD37 (1988) Moore Teaney PRC71 (2005)

Heavy quark diffusion: Langevin approach
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hfi(t)fj(t0)i = �ij�(t� t0)



• In the non-relativistic limit  Newton Langevin 
equation with a drag coefficient and a random force with  
and a momentum broadening coefficient 
 

• Equilibration  entails an Einstein 

relation  

 

·p = −ηDp+f(t)
⟨f(t)⟩ = 0

( lim
t→∞

⟨p(t)2⟩ = 3MT =
3κ

2ηD )
ηD =

κ
2MT

Svetitsky PRD37 (1988) Moore Teaney PRC71 (2005)

Heavy quark diffusion: Langevin approach
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• In the non-relativistic limit  Newton Langevin 
equation with a drag coefficient and a random force with  
and a momentum broadening coefficient 
 

•  can then be understood as the momentum picked up per unit time

·p = −ηDp+f(t)
⟨f(t)⟩ = 0

3κ

Svetitsky PRD37 (1988) Moore Teaney PRC71 (2005)
Bouttefeux Laine JHEP1220 (2020): detailed analysis of subtleties & relativistic corrections

Heavy quark diffusion: broadening coefficient
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• From the (un)correlation relation we have  
 

• We can identify the random force with the Lorentz force . For a NR 
quark  and thus

F
F = gE

Casalderrey-Solana Teaney PRD74 (2006) Caron-Huot Laine Moore JHEP0409 (2009)
Bouttefeux Laine JHEP1220 (2020): detailed analysis of subtleties & relativistic corrections

Heavy quark diffusion: broadening coefficient
<latexit sha1_base64="JHmuMWkV6raSLbWAGr8IdCWvu2Y=">AAACTHicbZDPaxNBFMdno9YafzTVo5fBIKagy24am/QgFL14rGDaQnZZ3k7eptPMzi4zbwthyR/oxYM3/wovHhQRnGz3oK0PBj5838/5pqWSloLgq9e5dfvO1t3te937Dx4+2untPj6xRWUETkWhCnOWgkUlNU5JksKz0iDkqcLTdPlukz+9RGNloT/SqsQ4h4WWmRRATkp6IlKgFwp5lsgB7WXJxYBe7EWmEd/UUbNhZhZpXAf+aDQZh4cvA384GY/29x1MDodB+HodLaEsYR3NUREktbxocUCv3LSk1w/8oAl+E8IW+qyN46T3JZoXospRk1Bg7SwMSoprMCSFwnU3qiyWIJawwJlDDTnauG5OXfPnTpnzrDDuaeKN+ndHDbm1qzx1lTnQub2e24j/y80qyiZxLXVZEWpxtSirFKeCb5zlc2lQkFo5AGGku5WLczAgyPnfdSaE1798E06GfnjgH3wY9Y/etnZss6fsGRuwkI3ZEXvPjtmUCfaJfWM/2E/vs/fd++X9virteG3PE/ZPdLb+AID7sBU=</latexit>

hfi(t)fj(t0)i = �ij�(t� t0)

👋

κ ∼
g2

3 ∫
+∞

−∞
dt ⟨E(t) ⋅ E(0)⟩ + 𝒪(v2)

9

κ =
1
3 ∫

+∞

−∞
dt ⟨f(t) ⋅ f(0)⟩



• Color anyone surprised? Color, anyone? 

• Wilson lines along the time axis: connection to the density matrix of 
the system at early time

• Physically: color rotation and interactions always possible for the 
heavy-quark probe

Casalderrey-Solana Teaney PRD74 (2006) Caron-Huot Laine Moore JHEP0409 (2009)

Heavy quark diffusion: broadening coefficient
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κQ =
g2

3Nc ∫
+∞

−∞
dt Tr⟨U(−∞, t)Ei(t)U(t,0)Ei(0)U(0, − ∞)⟩



• Operator living on the  
Schwinger-Keldysh  
contour: naturally emerges 
from having to evolve  
the initial density matrix

Casalderrey-Solana Teaney PRD74 (2006) Caron-Huot Laine Moore JHEP0409 (2009)

Heavy quark diffusion: broadening coefficient
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κQ =
g2

3Nc ∫
+∞

−∞
dt Tr⟨U(−∞, t)Ei(t)U(t,0)Ei(0)U(0, − ∞)⟩

t

−∞

−∞ − iβ

E(0)
E(t)



• Contour-ordered fields

Casalderrey-Solana Teaney PRD74 (2006) Caron-Huot Laine Moore JHEP0409 (2009)

Heavy quark diffusion: broadening coefficient
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κQ =
g2

3Nc ∫
+∞

−∞
dt Tr⟨U(−∞, t)Ei(t)U(t,0)Ei(0)U(0, − ∞)⟩

t

−∞

−∞ − iβ

E(0)
E(t)



• Amplitude  times 
conjugate amplitude in a  
medium

⟨ ⃗p | 0⃗⟩

Casalderrey-Solana Teaney PRD74 (2006) Caron-Huot Laine Moore JHEP0409 (2009)

Heavy quark diffusion: broadening coefficient
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κQ =
g2

3Nc ∫
+∞

−∞
dt Tr⟨U(−∞, t)Ei(t)U(t,0)Ei(0)U(0, − ∞)⟩

t

−∞

−∞ − iβ

E(0)
E(t)



Heavy quarkonium suppression



Tom Magorsch, Monday

Heavy quarkonium: EFTs and OQS

15

Open Quantum Systems

5

● Time evolution by Von-Neumann Equation

● Environmental d.o.f. not needed Trace out!

● “Master equation” for the System: Lindblad Equation



• After integrating out  you have pNRQCD 
 
 
 
 

• Contribution from the medium encoded in pNRQCD  
correlators. Dipole interaction at first order

mv ∼ 1/a0

Pineda Soto NPPS64 (1998) Brambilla Pineda Soto Vairo NPB566 (2000)

Heavy quarkonium: EFTs and OQS
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EFTs for Quarkonium Suppression

9

● Use NREFTs to exploit hierarchy of 
scales

● Temperature regime:

● Inverse radius:

● Binding Energy:

L = Llight +Tr

(
S
†

i@0 +

r2

m
� Vs

�
S + O

†

iD0 +

r2

m
� Vo

�
O

)

+Tr
�
O

†r · gE S + S
†r · gEO

 
+

1

2
Tr

�
O

†r · gEO+O
†
Or · gE

 
+ . . .

where ∆V =
1

r

(

αVo

2Nc
+ CF αVs

)

≈
Ncαs

2r
. The corresponding Feynman diagram is shown

in Fig. 5. Integrals over momenta have been regularized in dimensional regularization (d is

the number of dimensions, µ is the compensating scale). In Eq. (64), i/(−k0 − ∆V + iϵ)

is the “11” component of the static octet propagator; Eq. (66) vanishes because the “12”

component of the static octet propagator vanishes and in Eq. (67), 2πδ(−k0 − ∆V ) is the

“21” component of the static octet propagator. Note that vertices of type “1” and “2”

have opposite signs. Equation (65), which may also be read [−iδVs(r)]22 = [−iδVs(r)]
∗
11,

reflects the relation existing between the “11” and “22” components of the propagators in

the real-time formalism.

FIG. 5: The single continuous line stands for a singlet propagator, the double line for an octet

propagator, the circle with a cross for a chromoelectric dipole vertex and the curly line connecting

the two circles with a cross for a chromoelectric correlator.

We are interested in calculating the contribution to the integrals in Eqs. (64)-(67) from

momenta k ∼ T . Since T ≫ ∆V , we may expand in ∆V/T . Moreover, at leading order,

the propagators in Eqs. (64) and (67) are the free ones, D(0)
00 and D(0)

ii , given in Eqs. (36)

and (37). However the leading-order thermal contribution, which would be of order g2 r2 T 3,

vanishes:

[δVs(r)]11 = −ig2 CF
r2

d − 1
µ4−d

∫

ddk

(2π)d

i

−k0 + iϵ
(k0)2 4πδ(k2) nB(|k0|) = 0 , (68)

[δVs(r)]21 = ig2 CF
r2

d − 1
µ4−d

∫

ddk

(2π)d
2πδ(−k0) (k0)2 4πδ(k2) nB(|k0|) = 0 . (69)

Several next-to-leading order corrections are possible, because several scales are still dy-

namical in the EFT: we may have corrections of relative order ∆V/T , mD/T , (rT ), αs and

so on.

(1) First, we consider corrections of order ∆V/k0 or higher to the quark-antiquark prop-

agator, which contribute to order g2 r2 T 3 × ∆V/T or higher to δVs(r):

[δVs(r)]11 = −ig2 CF
r2

d − 1
µ4−d

∫

ddk

(2π)d

i

−k0 − ∆V + iϵ

[

(k0)2 D(0)
ii (k) + k⃗2 D(0)

00 (k)
]

11

18

T, mv2, mD



• Exploiting  the phases drop out at first orderT ≫ E

Brambilla Escobedo Soto Vairo (2016-17)

Heavy quarkonium: EFTs and OQS
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EFTs for Quarkonium Suppression

9

● Use NREFTs to exploit hierarchy of 
scales

● Temperature regime:

● Inverse radius:

● Binding Energy:
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T, mv2, mD

pNRQCD master equation

11

● In general the master Eq. is not of Lindblad form
● Simplify using hierarchy of scales

● Expand exponentials in 
● At LO in           we get 

Brambilla, Escobedo, Soto, Vairo: Phys. Rev. 
D 97 (2018) 7, 074009

Transport 
coefficients

κQQ̄ =
g2TF

3Nc
Re∫

+∞

−∞
dt ⟨T Ea

i (t)Uab(t,0)Eb
i (0)⟩

γQQ̄ =
g2TF

3Nc
Im∫

+∞

−∞
dt ⟨T Ea

i (t)Uab(t,0)Eb
i (0)⟩



Heavy quarkonium: EFTs and OQS
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κQQ̄ =
g2TF

3Nc
Re∫

+∞

−∞
dt ⟨T Ea

i (t)Uab(t,0)Eb
i (0)⟩ γQQ̄ =

g2TF

3Nc
Im∫

+∞

−∞
dt ⟨T Ea

i (t)Uab(t,0)Eb
i (0)⟩

pNRQCD master equation

14

Brambilla Escobedo Soto Vairo (2016-17), Tom Magorsch Monday



•  plays the role of a mass shift. Recall that  had amplitude x 
amplitude* structure for dissipation.  is the dispersive counterpart, 
the two forces are both in amplitude or in amplitude*: first you get 
kicked away from your momentum, then back into it. This forward 
scattering shifts the dispersion relation

γ κ
γ

Heavy quarkonium: EFTs and OQS

19

κQQ̄ =
g2TF

3Nc
Re∫

+∞

−∞
dt ⟨T Ea

i (t)Uab(t,0)Eb
i (0)⟩ γQQ̄ =

g2TF

3Nc
Im∫

+∞

−∞
dt ⟨T Ea

i (t)Uab(t,0)Eb
i (0)⟩

Brambilla Escobedo Soto Vairo (2016-17), Tom Magorsch Monday



• The Wilson line structure is different here: for the singlet mass shift 
and width, the adjoint self-energy corresponds to the octet state 
propagating between the dipole vertices. No interactions or color 
rotations are possible before the earliest and after the latest dipole 
interaction

Heavy quarkonium: EFTs and OQS

20

κQQ̄ =
g2TF

3Nc
Re∫

+∞

−∞
dt ⟨T Ea

i (t)Uab(t,0)Eb
i (0)⟩ γQQ̄ =

g2TF

3Nc
Im∫

+∞

−∞
dt ⟨T Ea

i (t)Uab(t,0)Eb
i (0)⟩

Brambilla Escobedo Soto Vairo (2016-17), Tom Magorsch Monday



•  is a very important transport coefficient, encoding the dissipative 
dynamics of non relativistic heavy quarks and of quarkonia

• For quarkonia, the mass shift  is another key ingredient

• What do we know about them? Perturbation theory, lattice, 
holography

• Are the heavy-quark and quarkonium coefficients the same?

κ

γ

Intermediate summary

21



Determining force-force correlators



• Leading order from Coulomb 
scattering off medium 
constituents Moore Teaney (2004)

• NLO from soft, classical gluons 
in the HTL-resummed theory

Perturbative results: κ

23

strict LO resummed LO NLO
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Figure 30: The heavy quark di↵usion coe�cient at NLO, as computed in [166, 167]. The
“strict” and “resummed” LO curves di↵er in that the second resums the Debye mass in the
propagator for all exchanged momenta. It thus resums a subset of higher order corrections.

tion introduced by the sum rule leading to Eq. (88), i.e. the mapping to the 3D
Euclidean theory. The computation of these O(g) corrections, as presented in
[166, 167], is thus a daunting brute-force calculation in the Hard Thermal Loop
theory. It required firstly the development of the e↵ective rules described in
Sec. 4.1.1, secondly their application and the generation of all diagrams, assign-
ments and amplitudes, and finally the numerical evaluation of 4-dimensional
loop integrations over these HTL-resummed amplitudes.

The results of this impressive computational tour de force are shown in
Fig. 30. The two di↵erent LO definitions di↵er in how the matching between
the soft and hard sectors is performed. Irrespective of this aspect, whose details
are to be found in the original works, the figure shows how the NLO corrections
rapidly (g & 0.5) overtake the LO results, thus showing again a pattern of bad
convergence similar to what we discussed before in the cases of q̂ and transport
coe�cients. Understanding precisely the physics responsible for these large
corrections in these observables and finding suitable ways of re-arranging the
perturbative expansion remains an important open issue, to which we will come
back in Sec. 8. Finally, we remark that the Euclidean definition in [165] does
not allow direct lattice determinations; analytical continuations of the Euclidean
results, of the kind discussed in Sec. 5.1, are necessary, albeit possibly easier due
to the lack of a narrow transport peak [165]. Results obtained in [168–171]—see
also [172] for an extraction from reconstructed quarkonium spectral functions—
show a  that is larger than the NLO perturbative results; recent results [173]
point towards a better agreement at very high temperatures.

For what concerns heavy quark bound states, we wish to discuss an issue
where the application of real-time perturbation theory shows its advantages in
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FIG. 1: Leading-order contribution to heavy quark diffusion
and its correspondence to scattering processes. On the left
the double line represents the Wilson line; on the right it is
the heavy quark external states.
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where CH = 4
3 is the Casimir of the heavy quark’s repre-

sentation. This Wightman correlator can be evaluated in
terms of the squared matrix elements of t-channel scat-
tering processes involving the heavy quark, as illustrated
in Fig. 1. These are the only processes which contribute
in our case, Compton-like processes being suppressed in
the low velocity limit. The result reduces to [8]
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Here p is the transferred momentum and q is the energy
of the light scattering target. Since the heavy quark is at
rest, the initial and final light-particle energies are equal
and p is purely spatial, which is why the medium modifi-
cation of the exchanged gluon propagator is purely Debye
screening with a Debye mass m2

D
= g2T 2(Nc +Nf/2)/3.

The inclusion of these HTL corrections is essential for
obtaining the complete leading order result, otherwise
κ would be infrared divergent in the region of soft mo-
mentum transfer p. Formally taking mD ≪ T , the in-
tegral is dominated by q ∼ T and p in the parametric
range mD

<∼ p <∼ T . The strict leading-order evaluation
of Eq. (4) yields
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with ξ = 1
2 − γE + ζ′(2)

ζ(2) ≃ −0.64718.

When the exchange momentum p is hard, p >∼ T , then
higher loop corrections to the propagators and vertices in
Fig. 1 represent O(g2) corrections. However, the expres-
sion (4) for κ receives an O(g) contribution from scat-
terings against soft gluons, q ∼ mD. Both the dispersion
relations and the interactions of such gluons are modified
at the O(1) level; at leading order these modifications are

described by hard thermal loops. Therefore there will be
O(g) corrections to the above calculation. But this is
not the only source of O(g) next-to-leading order (NLO)
corrections.
Another source is associated with overlapping scatter-

ing events: the total scattering rate for a hard particle is
∼ g2T , and is dominated by t-Channel Coulombic scat-
terings involving soft momentum transfers. These soft
scatterings have a duration of order ∼ 1/mD ∼ 1/gT and
therefore there is an O(g) probability that two such scat-
tering events overlap with each other. This is relevant
in QCD (though not in QED, see below) because each
scattering color-rotates the participants.
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FIG. 2: Diagrams required at NLO. The double line is the
Wilson line; otherwise all propagators are soft and HTL re-
summed and all vertices include the HTL vertex. All lines
attached to the Wilson line are longitudinal.

We need a systematic way of evaluating these NLO
effects. This is provided by a loopwise expansion for
Eq. (2). The diagrams needed at NLO are shown in
Fig. 2. The diagrammatic series is convergent in pow-
ers of g provided one incorporates HTL corrections in
propagators and vertices wherever momenta are soft [9],
unless a diagram is sensitive to the magnetic scale ∼ g2T ,
which would be signaled by an infrared divergence in the
evaluation of a Feynman diagram. This does not occur in
the current calculation; the diagrams shown in Fig. 2 are
all IR and UV convergent, after the leading-order con-
tribution is subtracted off from the transverse, pole-pole
contribution of diagram (A). Since the momenta are soft,
the ordering issues for the Wilson lines are subdominant
and we may replace the two Wilson lines in Eq. (2) with
an adjoint Wilson line; all diagrams involve the group
theoretic combination CHCA and we may represent the
NLO correction as the coefficient C defined by

κ=
CHg4T 3

18π

([

Nc+
Nf

2

][

ln
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+
Nf ln 2
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+
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)

(6)
with O(g2) corrections. There is no O(g) NLO correction
in QED, where the (bare and HTL) vertices involved in
diagrams (A), (B), (C) do not exist and the Wilson line
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and p is purely spatial, which is why the medium modifi-
cation of the exchanged gluon propagator is purely Debye
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sion (4) for κ receives an O(g) contribution from scat-
terings against soft gluons, q ∼ mD. Both the dispersion
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not the only source of O(g) next-to-leading order (NLO)
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ing events: the total scattering rate for a hard particle is
∼ g2T , and is dominated by t-Channel Coulombic scat-
terings involving soft momentum transfers. These soft
scatterings have a duration of order ∼ 1/mD ∼ 1/gT and
therefore there is an O(g) probability that two such scat-
tering events overlap with each other. This is relevant
in QCD (though not in QED, see below) because each
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ers of g provided one incorporates HTL corrections in
propagators and vertices wherever momenta are soft [9],
unless a diagram is sensitive to the magnetic scale ∼ g2T ,
which would be signaled by an infrared divergence in the
evaluation of a Feynman diagram. This does not occur in
the current calculation; the diagrams shown in Fig. 2 are
all IR and UV convergent, after the leading-order con-
tribution is subtracted off from the transverse, pole-pole
contribution of diagram (A). Since the momenta are soft,
the ordering issues for the Wilson lines are subdominant
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tering processes involving the heavy quark, as illustrated
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of the light scattering target. Since the heavy quark is at
rest, the initial and final light-particle energies are equal
and p is purely spatial, which is why the medium modifi-
cation of the exchanged gluon propagator is purely Debye
screening with a Debye mass m2
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The inclusion of these HTL corrections is essential for
obtaining the complete leading order result, otherwise
κ would be infrared divergent in the region of soft mo-
mentum transfer p. Formally taking mD ≪ T , the in-
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When the exchange momentum p is hard, p >∼ T , then
higher loop corrections to the propagators and vertices in
Fig. 1 represent O(g2) corrections. However, the expres-
sion (4) for κ receives an O(g) contribution from scat-
terings against soft gluons, q ∼ mD. Both the dispersion
relations and the interactions of such gluons are modified
at the O(1) level; at leading order these modifications are

described by hard thermal loops. Therefore there will be
O(g) corrections to the above calculation. But this is
not the only source of O(g) next-to-leading order (NLO)
corrections.
Another source is associated with overlapping scatter-

ing events: the total scattering rate for a hard particle is
∼ g2T , and is dominated by t-Channel Coulombic scat-
terings involving soft momentum transfers. These soft
scatterings have a duration of order ∼ 1/mD ∼ 1/gT and
therefore there is an O(g) probability that two such scat-
tering events overlap with each other. This is relevant
in QCD (though not in QED, see below) because each
scattering color-rotates the participants.
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We need a systematic way of evaluating these NLO
effects. This is provided by a loopwise expansion for
Eq. (2). The diagrams needed at NLO are shown in
Fig. 2. The diagrammatic series is convergent in pow-
ers of g provided one incorporates HTL corrections in
propagators and vertices wherever momenta are soft [9],
unless a diagram is sensitive to the magnetic scale ∼ g2T ,
which would be signaled by an infrared divergence in the
evaluation of a Feynman diagram. This does not occur in
the current calculation; the diagrams shown in Fig. 2 are
all IR and UV convergent, after the leading-order con-
tribution is subtracted off from the transverse, pole-pole
contribution of diagram (A). Since the momenta are soft,
the ordering issues for the Wilson lines are subdominant
and we may replace the two Wilson lines in Eq. (2) with
an adjoint Wilson line; all diagrams involve the group
theoretic combination CHCA and we may represent the
NLO correction as the coefficient C defined by

κ=
CHg4T 3

18π
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+
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+
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(6)
with O(g2) corrections. There is no O(g) NLO correction
in QED, where the (bare and HTL) vertices involved in
diagrams (A), (B), (C) do not exist and the Wilson line
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tion introduced by the sum rule leading to Eq. (88), i.e. the mapping to the 3D
Euclidean theory. The computation of these O(g) corrections, as presented in
[166, 167], is thus a daunting brute-force calculation in the Hard Thermal Loop
theory. It required firstly the development of the e↵ective rules described in
Sec. 4.1.1, secondly their application and the generation of all diagrams, assign-
ments and amplitudes, and finally the numerical evaluation of 4-dimensional
loop integrations over these HTL-resummed amplitudes.

The results of this impressive computational tour de force are shown in
Fig. 30. The two di↵erent LO definitions di↵er in how the matching between
the soft and hard sectors is performed. Irrespective of this aspect, whose details
are to be found in the original works, the figure shows how the NLO corrections
rapidly (g & 0.5) overtake the LO results, thus showing again a pattern of bad
convergence similar to what we discussed before in the cases of q̂ and transport
coe�cients. Understanding precisely the physics responsible for these large
corrections in these observables and finding suitable ways of re-arranging the
perturbative expansion remains an important open issue, to which we will come
back in Sec. 8. Finally, we remark that the Euclidean definition in [165] does
not allow direct lattice determinations; analytical continuations of the Euclidean
results, of the kind discussed in Sec. 5.1, are necessary, albeit possibly easier due
to the lack of a narrow transport peak [165]. Results obtained in [168–171]—see
also [172] for an extraction from reconstructed quarkonium spectral functions—
show a  that is larger than the NLO perturbative results; recent results [173]
point towards a better agreement at very high temperatures.

For what concerns heavy quark bound states, we wish to discuss an issue
where the application of real-time perturbation theory shows its advantages in
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where CH = 4
3 is the Casimir of the heavy quark’s repre-

sentation. This Wightman correlator can be evaluated in
terms of the squared matrix elements of t-channel scat-
tering processes involving the heavy quark, as illustrated
in Fig. 1. These are the only processes which contribute
in our case, Compton-like processes being suppressed in
the low velocity limit. The result reduces to [8]
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Here p is the transferred momentum and q is the energy
of the light scattering target. Since the heavy quark is at
rest, the initial and final light-particle energies are equal
and p is purely spatial, which is why the medium modifi-
cation of the exchanged gluon propagator is purely Debye
screening with a Debye mass m2

D
= g2T 2(Nc +Nf/2)/3.

The inclusion of these HTL corrections is essential for
obtaining the complete leading order result, otherwise
κ would be infrared divergent in the region of soft mo-
mentum transfer p. Formally taking mD ≪ T , the in-
tegral is dominated by q ∼ T and p in the parametric
range mD

<∼ p <∼ T . The strict leading-order evaluation
of Eq. (4) yields
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with ξ = 1
2 − γE + ζ′(2)

ζ(2) ≃ −0.64718.

When the exchange momentum p is hard, p >∼ T , then
higher loop corrections to the propagators and vertices in
Fig. 1 represent O(g2) corrections. However, the expres-
sion (4) for κ receives an O(g) contribution from scat-
terings against soft gluons, q ∼ mD. Both the dispersion
relations and the interactions of such gluons are modified
at the O(1) level; at leading order these modifications are

described by hard thermal loops. Therefore there will be
O(g) corrections to the above calculation. But this is
not the only source of O(g) next-to-leading order (NLO)
corrections.
Another source is associated with overlapping scatter-

ing events: the total scattering rate for a hard particle is
∼ g2T , and is dominated by t-Channel Coulombic scat-
terings involving soft momentum transfers. These soft
scatterings have a duration of order ∼ 1/mD ∼ 1/gT and
therefore there is an O(g) probability that two such scat-
tering events overlap with each other. This is relevant
in QCD (though not in QED, see below) because each
scattering color-rotates the participants.
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FIG. 2: Diagrams required at NLO. The double line is the
Wilson line; otherwise all propagators are soft and HTL re-
summed and all vertices include the HTL vertex. All lines
attached to the Wilson line are longitudinal.

We need a systematic way of evaluating these NLO
effects. This is provided by a loopwise expansion for
Eq. (2). The diagrams needed at NLO are shown in
Fig. 2. The diagrammatic series is convergent in pow-
ers of g provided one incorporates HTL corrections in
propagators and vertices wherever momenta are soft [9],
unless a diagram is sensitive to the magnetic scale ∼ g2T ,
which would be signaled by an infrared divergence in the
evaluation of a Feynman diagram. This does not occur in
the current calculation; the diagrams shown in Fig. 2 are
all IR and UV convergent, after the leading-order con-
tribution is subtracted off from the transverse, pole-pole
contribution of diagram (A). Since the momenta are soft,
the ordering issues for the Wilson lines are subdominant
and we may replace the two Wilson lines in Eq. (2) with
an adjoint Wilson line; all diagrams involve the group
theoretic combination CHCA and we may represent the
NLO correction as the coefficient C defined by

κ=
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18π
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with O(g2) corrections. There is no O(g) NLO correction
in QED, where the (bare and HTL) vertices involved in
diagrams (A), (B), (C) do not exist and the Wilson line
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not the only source of O(g) next-to-leading order (NLO)
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ing events: the total scattering rate for a hard particle is
∼ g2T , and is dominated by t-Channel Coulombic scat-
terings involving soft momentum transfers. These soft
scatterings have a duration of order ∼ 1/mD ∼ 1/gT and
therefore there is an O(g) probability that two such scat-
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in Fig. 1. These are the only processes which contribute
in our case, Compton-like processes being suppressed in
the low velocity limit. The result reduces to [8]

κLO ≡ g4CH

12π3

∫ ∞

0
q2dq

∫ 2q

0

p3 dp

(p2 +m2
D
)2

×

⎧
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⎩

Nf nF (q)(1−nF (q))
(

2− p2

2q2

)

+Nc nB(q)(1+nB(q))
(

2− p2

q2 + p4

4q4

)

.
(4)

Here p is the transferred momentum and q is the energy
of the light scattering target. Since the heavy quark is at
rest, the initial and final light-particle energies are equal
and p is purely spatial, which is why the medium modifi-
cation of the exchanged gluon propagator is purely Debye
screening with a Debye mass m2

D
= g2T 2(Nc +Nf/2)/3.

The inclusion of these HTL corrections is essential for
obtaining the complete leading order result, otherwise
κ would be infrared divergent in the region of soft mo-
mentum transfer p. Formally taking mD ≪ T , the in-
tegral is dominated by q ∼ T and p in the parametric
range mD

<∼ p <∼ T . The strict leading-order evaluation
of Eq. (4) yields

κ ≃ CHg4T 3

18π

[

Nc

(

ln
2T

mD

+ξ

)

+
Nf

2

(

ln
4T

mD

+ξ

)]

, (5)

with ξ = 1
2 − γE + ζ′(2)

ζ(2) ≃ −0.64718.

When the exchange momentum p is hard, p >∼ T , then
higher loop corrections to the propagators and vertices in
Fig. 1 represent O(g2) corrections. However, the expres-
sion (4) for κ receives an O(g) contribution from scat-
terings against soft gluons, q ∼ mD. Both the dispersion
relations and the interactions of such gluons are modified
at the O(1) level; at leading order these modifications are

described by hard thermal loops. Therefore there will be
O(g) corrections to the above calculation. But this is
not the only source of O(g) next-to-leading order (NLO)
corrections.
Another source is associated with overlapping scatter-

ing events: the total scattering rate for a hard particle is
∼ g2T , and is dominated by t-Channel Coulombic scat-
terings involving soft momentum transfers. These soft
scatterings have a duration of order ∼ 1/mD ∼ 1/gT and
therefore there is an O(g) probability that two such scat-
tering events overlap with each other. This is relevant
in QCD (though not in QED, see below) because each
scattering color-rotates the participants.
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R PQ

R
(A) (B)

Q
P P

Q

(C) (D)

FIG. 2: Diagrams required at NLO. The double line is the
Wilson line; otherwise all propagators are soft and HTL re-
summed and all vertices include the HTL vertex. All lines
attached to the Wilson line are longitudinal.

We need a systematic way of evaluating these NLO
effects. This is provided by a loopwise expansion for
Eq. (2). The diagrams needed at NLO are shown in
Fig. 2. The diagrammatic series is convergent in pow-
ers of g provided one incorporates HTL corrections in
propagators and vertices wherever momenta are soft [9],
unless a diagram is sensitive to the magnetic scale ∼ g2T ,
which would be signaled by an infrared divergence in the
evaluation of a Feynman diagram. This does not occur in
the current calculation; the diagrams shown in Fig. 2 are
all IR and UV convergent, after the leading-order con-
tribution is subtracted off from the transverse, pole-pole
contribution of diagram (A). Since the momenta are soft,
the ordering issues for the Wilson lines are subdominant
and we may replace the two Wilson lines in Eq. (2) with
an adjoint Wilson line; all diagrams involve the group
theoretic combination CHCA and we may represent the
NLO correction as the coefficient C defined by

κ=
CHg4T 3

18π

([

Nc+
Nf

2

][

ln
2T

mD

+ξ

]

+
Nf ln 2

2
+
NcmD

T
C

)

(6)
with O(g2) corrections. There is no O(g) NLO correction
in QED, where the (bare and HTL) vertices involved in
diagrams (A), (B), (C) do not exist and the Wilson line
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Figure 30: The heavy quark di↵usion coe�cient at NLO, as computed in [166, 167]. The
“strict” and “resummed” LO curves di↵er in that the second resums the Debye mass in the
propagator for all exchanged momenta. It thus resums a subset of higher order corrections.

tion introduced by the sum rule leading to Eq. (88), i.e. the mapping to the 3D
Euclidean theory. The computation of these O(g) corrections, as presented in
[166, 167], is thus a daunting brute-force calculation in the Hard Thermal Loop
theory. It required firstly the development of the e↵ective rules described in
Sec. 4.1.1, secondly their application and the generation of all diagrams, assign-
ments and amplitudes, and finally the numerical evaluation of 4-dimensional
loop integrations over these HTL-resummed amplitudes.

The results of this impressive computational tour de force are shown in
Fig. 30. The two di↵erent LO definitions di↵er in how the matching between
the soft and hard sectors is performed. Irrespective of this aspect, whose details
are to be found in the original works, the figure shows how the NLO corrections
rapidly (g & 0.5) overtake the LO results, thus showing again a pattern of bad
convergence similar to what we discussed before in the cases of q̂ and transport
coe�cients. Understanding precisely the physics responsible for these large
corrections in these observables and finding suitable ways of re-arranging the
perturbative expansion remains an important open issue, to which we will come
back in Sec. 8. Finally, we remark that the Euclidean definition in [165] does
not allow direct lattice determinations; analytical continuations of the Euclidean
results, of the kind discussed in Sec. 5.1, are necessary, albeit possibly easier due
to the lack of a narrow transport peak [165]. Results obtained in [168–171]—see
also [172] for an extraction from reconstructed quarkonium spectral functions—
show a  that is larger than the NLO perturbative results; recent results [173]
point towards a better agreement at very high temperatures.

For what concerns heavy quark bound states, we wish to discuss an issue
where the application of real-time perturbation theory shows its advantages in
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FIG. 1: Leading-order contribution to heavy quark diffusion
and its correspondence to scattering processes. On the left
the double line represents the Wilson line; on the right it is
the heavy quark external states.

in covariant and Coulomb gauges[14])
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3 is the Casimir of the heavy quark’s repre-

sentation. This Wightman correlator can be evaluated in
terms of the squared matrix elements of t-channel scat-
tering processes involving the heavy quark, as illustrated
in Fig. 1. These are the only processes which contribute
in our case, Compton-like processes being suppressed in
the low velocity limit. The result reduces to [8]
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Here p is the transferred momentum and q is the energy
of the light scattering target. Since the heavy quark is at
rest, the initial and final light-particle energies are equal
and p is purely spatial, which is why the medium modifi-
cation of the exchanged gluon propagator is purely Debye
screening with a Debye mass m2

D
= g2T 2(Nc +Nf/2)/3.

The inclusion of these HTL corrections is essential for
obtaining the complete leading order result, otherwise
κ would be infrared divergent in the region of soft mo-
mentum transfer p. Formally taking mD ≪ T , the in-
tegral is dominated by q ∼ T and p in the parametric
range mD

<∼ p <∼ T . The strict leading-order evaluation
of Eq. (4) yields
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When the exchange momentum p is hard, p >∼ T , then
higher loop corrections to the propagators and vertices in
Fig. 1 represent O(g2) corrections. However, the expres-
sion (4) for κ receives an O(g) contribution from scat-
terings against soft gluons, q ∼ mD. Both the dispersion
relations and the interactions of such gluons are modified
at the O(1) level; at leading order these modifications are

described by hard thermal loops. Therefore there will be
O(g) corrections to the above calculation. But this is
not the only source of O(g) next-to-leading order (NLO)
corrections.
Another source is associated with overlapping scatter-

ing events: the total scattering rate for a hard particle is
∼ g2T , and is dominated by t-Channel Coulombic scat-
terings involving soft momentum transfers. These soft
scatterings have a duration of order ∼ 1/mD ∼ 1/gT and
therefore there is an O(g) probability that two such scat-
tering events overlap with each other. This is relevant
in QCD (though not in QED, see below) because each
scattering color-rotates the participants.
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summed and all vertices include the HTL vertex. All lines
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We need a systematic way of evaluating these NLO
effects. This is provided by a loopwise expansion for
Eq. (2). The diagrams needed at NLO are shown in
Fig. 2. The diagrammatic series is convergent in pow-
ers of g provided one incorporates HTL corrections in
propagators and vertices wherever momenta are soft [9],
unless a diagram is sensitive to the magnetic scale ∼ g2T ,
which would be signaled by an infrared divergence in the
evaluation of a Feynman diagram. This does not occur in
the current calculation; the diagrams shown in Fig. 2 are
all IR and UV convergent, after the leading-order con-
tribution is subtracted off from the transverse, pole-pole
contribution of diagram (A). Since the momenta are soft,
the ordering issues for the Wilson lines are subdominant
and we may replace the two Wilson lines in Eq. (2) with
an adjoint Wilson line; all diagrams involve the group
theoretic combination CHCA and we may represent the
NLO correction as the coefficient C defined by

κ=
CHg4T 3

18π

([

Nc+
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2
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ln
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+
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(6)
with O(g2) corrections. There is no O(g) NLO correction
in QED, where the (bare and HTL) vertices involved in
diagrams (A), (B), (C) do not exist and the Wilson line
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Fig. 4. Next-to-leading order contributions to the field strength correlator. The glu-
onic string is represented by a double line. The shaded blob represents the insertion
of the one-loop gluon self-energy. Symmetric graphs are understood for (c) and (d).
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γQ =
g2

3Nc
Im∫

+∞

−∞
dt Tr⟨T U(−∞, t)Ei(t)(t,0)Ei(0)(0, − ∞)⟩

6
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11

2
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1

11

FIG. 3. Diagrams (j) for �(j)fund. The graphical notation is the
same as in Fig. 2, except that the solid line is now the Wil-
son line stretching forward in time from negative to positive
infinity passing both E fields (upper contour), to then turn
back and return to −∞ (lower contour). We show two of the
six possibilities for the temporal gluon, which can connect as
a “1” (“2”) field to the upper (lower) contour before, between
or after the E fields. We do not show the case where the E
fields source one transverse and one temporal gluon; there the
lower contour does not contribute.

gluon. Finally, ∫P = ∫ d
DP �(2⇡)D is the Minkowski D-

dimensional integral.
In the fundamental case one has instead the configu-

rations shown in Fig. 3. They give

�(j)fund = −
g4

6Nc
Im�

∞
0

dt��
t

0
dt′ −�

0

−∞ dt′ −�
∞

t

dt′�

×�
Q
�
P

eiq
0
te−i(p0+q0)t′ ifacbfabc

(�p + �q)2
�q0p0(q0 − p0)

× (G11
ik
(P )G11

ki
(Q) + ✏(t′)✏(t − t′)G>

ik
(P )G>

ki
(Q))

+ 2ip0q̂iq̂jG11
ij
(P ) − 2iq0p̂ip̂jG11

ij
(Q)�, (A2)

where, as shown in the figure, there are now two pos-
sible “12” assignments for the fields sourced by the op-
erator: the E fields are always of type “1”, while the
A0 gluon is “1” if it comes from U(0,−∞) or U(s,0),
“2” if from U(−∞, s). For reasons which will become
clearer soon, we have rewritten this last Wilson line as
U(−∞, s) = U(−∞,∞)U(∞, s), with U(−∞,∞) thus of
type “2” and U(∞, s) of type “1”, hence the ∫

∞
t

dt′ con-
tribution.5 The second line describes the diagrams with
two transverse gluons, where we have used the definition
G> = G21. For these diagrams, as shown in Fig. 3, we
have two assignments contributing to each of the three dt′
integrations. The relative sign between the two, encoded

in the sign functions ✏(t′)✏(t− t′), arises from the combi-
nation of a minus sign from the di↵erent color ordering
— in the 0 < t′ < t region — together with another mi-
nus sign from the opposite direction of the Wilson lines.
The final line encodes the contribution of graphs with a
single transverse gluon, for which the lower “2” contour
does not contribute. The overall factor of 1�2 in front
of Eq. (A2) with respect to Eq. (A1) arises from color
tracing in the di↵erent cases.
If we take the di↵erence between Eq. (A2) and (A1)

we obtain �� ≡ �fund − �adj. It reads

�� = −
g4CFNc

3
Im�

∞
0

dt�
∞
−∞ dt′ �

Q
�
P

ieiq
0
te−i(p0+q0)t′
(�p + �q)2

× �q0p0(q0 − p0)[G11
ik
(P )G11

ki
(Q) −G>

ik
(P )G>

ki
(Q)]

+ 2ip0q̂iq̂jG11
ij
(P ) − 2iq0p̂ip̂jG11

ij
(Q)�, (A3)

so that the structure of the time integrations simplifies
greatly; hence our choice of introducing the ∫

∞
t

dt′ con-
tribution. Upon using Gij(P ) = (�ij − p̂ip̂j)GT (P ) we
find

�� = −
2g4CFNc

3
Im�

Q
�
P

2⇡�(q0 + p0)

(�p + �q)2

× �q20[G
11
T
(P )G11

T
(Q) −G>

T
(P )G>

T
(Q)][d − 2 + (p̂ ⋅ q̂)2]

+ i[G11
T
(P ) +G11

T
(Q)][1 − (p̂ ⋅ q̂)2]�. (A4)

G>
T
(Q) = (✓(q0) + nB(�q

0
�))2⇡�(Q2

) is purely real and
thus does not contribute to ��. G11

T
(Q) = iP1�(q20 −

q2)+(1�2+nB(�q
0
�))2⇡�(Q2

) has both real and imaginary
parts, with P a principal-value prescription and nB the
Bose–Einstein distribution, so that

�� = − 4
g4CFNc

3 �
Q
�
p

2⇡�(Q2
)

(�p + �q)2
�
1

2
+ nB(�q

0
�)�

× �P
q20

q20 − p
2
�d − 2 + (p̂ ⋅ q̂)2� + 1 − (p̂ ⋅ q̂)2�

=
8

3
↵2
sCFNc ⇣(3)T

3 , (A5)

where we have also used the p ↔ q symmetry of the
integrand. The final integration has been carried out
in DR, showing that Eq. (A5) is equal to the di↵erence
between Eqs. (19) and (20), as we set out to prove.

5
In a covariant gauge the contribution of ∫ ∞t dt′ vanishes, as ex-

pected from the unitarity of the Wilson lines. In Coulomb gauge

one needs anyway to consider U(−∞, s) as U(−∞, s+�+)U(�+, s),
with �+ arbitrarily small and positive. This avoids the appear-

ance of ill-defined ✓(0) contributions arising from the time inte-

grations of the bare temporal propagators, which are instanta-

neous in time.
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order in perturbation theory, O(g4T 3
). Physically,

the di↵erence between the two can be understood as
follows: �fund is related to the propagation of a single
heavy quark, which can interact with the medium at
any time, whereas �adj describes a QQ̄ pair, which is
a medium-blind singlet before (after) the first (last)
E field insertion. Indeed, our explicit evaluation,
presented in App. A, shows how the di↵erence arises
from the Wilson lines before/after the E fields.4 We
also observe that, at zero temperature, the NLO result
for g2�(6Nc)�E

a
(t)Uab(t,0)E

b
(0)� in [46] and that for

g2�(3Nc) �Tr �T U(−∞, t)Ei
(t)U(t,0)Ei

(0)U(0,−∞)��,
which can be extracted from the T = 0 limit of [35], do
not agree, further confirming the di↵erent nature of the
two operators.

We have furthermore shown that �fund can be re-
expressed in terms of a Euclidean correlation function,
(6), which is highly amenable to a lattice determination.
With the vacuum contributions removed, the time inte-
gral of the correlator, (8), should not su↵er from diver-
gences and the computational cost should be reasonable
if smoothing techniques like gradient flow are employed.
We confirmed that the LO results for �fund, evaluated
via real-time techniques, agree with the Euclidean time-
integration of the results of Ref. [35], which is a nontriv-
ial check on our derivation of the Euclidean continuation.
We also obtained the NLO correction to �fund and �adj
in Eq. (21).

The physical interpretation of �fund is at the moment
however not completely clear to us; we plan to return to
this issue in a follow-up publication, [34], where we also
intend to address the issue of the Euclidean counterpart
to �adj. Similarly, we can define fund as the real rather
than imaginary part of Eq. (4), and adj as the real part
of Eq. (3). The former is relevant for the medium inter-
actions of open heavy quarks, while the latter is relevant
in quarkonium physics. Perturbative results show that
they agree up to order g5T 3 [10, 25, 26], but there is no
reason why this should persist to all orders. We plan
to touch this issue as well in [34], together with that of
gauge invariance discussed in footnote 4.
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4
The computation of �adj in [10] was performed in the A0 = 0

gauge, where the contribution of the Wilson lines vanishes and

one would naively expect �adj and �fund to be equal. However,

more care is needed when temporal Wilson lines stretch to t = −∞
in the A0 = 0 gauge; we plan to return to the issue of gauge

invariance in this singular gauge in [34].

NOTE ADDED

As we were finalizing this paper, we became aware
of the preprint “Transport coe�cients from in medium
quarkonium dynamics” [47] by N. Brambilla, M. Á. Es-
cobedo, A. Vairo and P. Vander Griend. It proposes a
way to determine � from the quarkonium spectral func-
tion reconstructed from lattice QCD [48]. We thank the
authors for sharing their results with us prior to publica-
tion and for discussion.

Appendix A: Explicit real-time computation of
diagram (j)
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1
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FIG. 2. Diagram (j) for �(j)adj. The vertices with the cross are
the E fields, the double line is the adjoint Wilson line, curly
lines are transverse gluons and the dashed line a temporal
gluon. The diagram where one of the E fields sources a tem-
poral gluon is not shown explicitly. The “1” label the “12”
assignments of the fields.

In the adjoint case, diagram (j) is shown in Fig. 2. It
contributes to

�(j)adj = −
g4

3Nc
Im�

∞
0

dt�
t

0
dt′ �

Q
�
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eiq
0
te−i(p0+q0)t′
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ik
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ki
(Q)

+ 2ip0q̂iq̂jG11
ij
(P ) − 2iq0p̂ip̂jG11

ij
(Q)�, (A1)

where we have rewritten the integral over negative and
positive times of the contour-ordered operator as twice
the positive-time integral of the forward Wightman op-
erator. Thus, the three fields sourced by the operator,
E(t), A0

(t′) and E(0), are naturally time-ordered and
thus of type “1” in the “12” formalism of real-time per-
turbation theory. In Coulomb gauge the A0

(t′) field can
only connect to another A0 field, which has furthermore
to be of type “1” as well, due to the diagonal nature of
the bare temporal propagator matrix. Hence, the three-
gluon vertex has to be of type “1”, so that the propa-
gators of the transverse gluons have to be of type “11”,
i.e., time-ordered. Indeed, the second line of Eq. (A1)
is the contribution with two transverse gluons sourced
by the two E fields, as depicted in Fig. 2, while on the
final line they source one transverse and one temporal
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Heavy quark diffusion on the lattice
• The story starts with . Do analytical continuation to Euclidean 

 

• What we want is the spectral function, which is hidden in the 
convolution integral on the right, and (after many non-trivial steps 
such as gradient flow) we have a few discrete datapoints on the left 
 
 

• An inverse problem, perhaps with less of a peak to climb
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Going to Euclidean spacetime with 0 < τ < β and integrating
out the heavy spinors and we finally end up with

GE(τ) = −
1

3

3
X

i=1

⟨Re Tr[Uβ;τ gEi(τ, 0) Uτ ;0 gEi(0, 0)]⟩

⟨Re Tr[Uβ;0]⟩
.

τ

β − τ

This is a Euclidean version of the electric field correlator by
Casalderrey-Solana Teaney with knowledge that no O(g2) went amiss.
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hReTr [U(1/T, 0)]i

Going to Euclidean spacetime with 0 < τ < β and integrating
out the heavy spinors and we finally end up with

GE(τ) = −
1

3

3
X

i=1

⟨Re Tr[Uβ;τ gEi(τ, 0) Uτ ;0 gEi(0, 0)]⟩

⟨Re Tr[Uβ;0]⟩
.

τ

β − τ

This is a Euclidean version of the electric field correlator by
Casalderrey-Solana Teaney with knowledge that no O(g2) went amiss.

24

GE(τ) = ∫
dω
2π

e−iωτ[1 + nB(ω)]ρQ(ω)

Caron-Huot Laine Moore JHEP0409 (2009)
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ω
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7

FIG. 5. Flow-time-to-zero extrapolation of the continuum
color-electric correlator at fixed ⌧T using a linear Ansatz. The
range of flow times at each separation is restricted by Eq. 11
and the statistical precision (see Sec. IVD).

tween the correlator distances, the nonflowed tree-level
improvement of the Zeuthen-flowed correlators, and fi-
nally the interpolation and extrapolation Ansätze.

V. HEAVY QUARK MOMENTUM DIFFUSION
COEFFICIENT

A. Spectral function of the color-electric correlator

It was shown in [18] that the heavy quark momentum
di↵usion coe�cient can be obtained from

 = lim
!→0

2T

!
⇢(!) , (15)

where ⇢(!) is the spectral function of the color-electric
correlator, which is related to the Euclidean correlator
we compute here through the integral relation

G(⌧) = �

∞
0

d!

⇡
⇢(!)

cosh �!(⌧ − 1
2T )
�

sinh � !
2T
�

. (16)

In the following we will calculate the leading-order con-
tinuum spectral function under gradient flow, which will
lead to a discussion about the Kramers-Kronig relation
and flowed retarded correlators.

The (continuum, zero flow time) leading-order spectral
function is well known [21]. But we did not find a study of
the spectral function for the Euclidean function at finite
flow depth, so we will consider this problem here. We
start from the leading-order correlation function at flow

Gradient flow method
Multi-level method

0.10 0.20 0.30 0.40 0.5

⌧T

1.5

2.0

2.5

3.0

3.5

G
cont(⌧)

G
norm
cont (⌧)

FIG. 6. Nonperturbatively renormalized continuum color-
electric correlator at zero flow time obtained from the gradi-
ent flow method (with lattice setup from Table I) in compari-
son with revised continuum correlator from multilevel method
(perturbatively renormalized to NLO [32]) using lattice data
from [24].

time ⌧F,

G
LO
(⌧, ⌧F) = −

g
2
BCF

3 �

K

e
ikn⌧

e
−2⌧FK2 (D − 1)k2

n + k
2

K2

= −
g
2
BCF

3

d

(4⇡)d�2 T�

kn

e
ikn⌧
�k

2
n�

d�2

× ��(1 − d�2,2⌧Fk
2
n) +

1

2
�(−d�2,2⌧Fk

2
n)� ,

(17)

where �(s, x) = ∫
∞

x dt t
s−1

e
−t is the incomplete Gamma

function and d the number of space dimensions. Fourier
transforming the correlator to frequency space using the

(periodic) Kronecker delta function ∫
�
0 d⌧e

ikn⌧
= ��kn,0

leads to

G̃
LO
(!n, ⌧F) = −

g
2
BCF

3

d

(4⇡)d�2 �!
2
n�

d�2

× ��(1 − d�2,2⌧F!
2
n) +

1

2
�(−d�2,2⌧F!

2
n)� .

(18)
Setting the dimension to its physical value d = 3 and
performing the analytic continuation

⇢(!) = Im� lim
✏→0+ G̃(!n → −i! + ✏)� , (19)

Altenkort et al. PRD103 (2021)
• Gradient flow reduces noise and 

renormalizes the chromo-E fields 
Altenkort et al. PRD103 (2021) Brambilla et 
al. 2212.1094 2312.17321

• Inverse problem in general tackled by 
fitting to specific AnsätzeT = 1.5Tc Nf = 0
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• A long history in the quenched case, with  corrections recently 
being determined 
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We present the first study of the quark mass dependence of the heavy quark momentum and spatial
di↵usion coe�cients using lattice QCD with light dynamical quarks corresponding to a pion mass of
320 MeV. We find that, for the temperature range 195 MeV < T < 293 MeV, the spatial di↵usion
coe�cients of the charm and bottom quarks are smaller than those obtained in phenomenological
models that describe the pT spectra and elliptic flow of open heavy flavor hadrons.

Introduction.– Heavy-ion experiments at high energies
hint toward a rapid thermalization of heavy (charm and
bottom) quarks. These observations are surprising since
the relaxation time of a heavy quark immersed in a
quark-gluon plasma (QGP) is expected to be M/T times
larger than the relaxation time of the light bulk degrees
of freedom constituting the QGP, where M is the heavy
quark mass [1, 2] and T is the temperature of the QGP.
These experimental observations corroborate the picture
that the QGP created in such high-energy heavy-ion col-
lisions is an almost perfect fluid, see Refs. [3–5]. This
makes the heavy quark di↵usion coe�cient one of the
fundamental transport properties of the QGP, along with
other transport coe�cients such as shear and bulk vis-
cosities.

The heavy quark momentum di↵usion coe�cient, , is
defined as the average momentum transfer squared to a
heavy quark from the medium per unit time, and thus
characterizes the kinetic relaxation of heavy quarks to-
ward thermal equilibrium. One can also define the spa-
tial heavy quark di↵usion coe�cient Ds in terms of the
conserved net heavy flavor number through the usual
Kubo formula. This spatial heavy quark di↵usion co-
e�cient will depend on M , and also has a well defined
limit when M goes to zero. Close to equilibrium, in the
limit M � T , the momentum and spatial heavy quark
di↵usion coe�cients are related [2, 6],

Ds =
2T 2


· hp2i
3MT

, (1)

where hp2i is thermal averaged momentum squared of the
heavy quark.

Experimentally measured pT spectra and the elliptic
flows of open charm and open bottom hadrons provide
information on the degree of thermalization of the heavy
quarks in the QGP, see Refs. [3–5] for reviews. Ds can
be estimated by fitting these experimental measurements
using phenomenological transport models, see Refs. [3–5].
A key ingredient of these transport models is an e↵ective

momentum-dependent heavy-quark di↵usion coe�cient,
which in turn may depend on some e↵ective in-medium
cross sections. The Ds appearing in the Kubo formula
can be obtained as the zero-momentum limit of this ef-
fective di↵usion coe�cient.

Very recently, Ds has been calculated in 2+1 flavor
QCD for infinitely heavy quarks [7]. This QCD result
for the infinite-mass limit turns out to be smaller than
the phenomenological estimate of Ds for the charm and
bottom quarks. This begs the question whether these
discrepancies arise solely due to the mass dependence of
Ds. In this Letter we address this question by presenting
first lattice QCD calculations of the mass-dependent Ds

with light dynamical quarks.
Theoretical framework.– For M � T ,  can be calcu-

lated using heavy quark e↵ective theory [6, 8, 9]. In this
framework  is expressed in terms of the correlation func-
tion of chromo-electric (E) and chromo-magnetic (B)
fields connected by fundamental Wilson lines [6, 8, 9].
In this e↵ective theory

 = E +
2

3
hv2iB , (2)

where E,B(T ) = 2T lim!!0 [⇢E,B(!, T )/!] [6, 9], ⇢E,B

are the spectral functions corresponding to the E and B
field correlation functions, and hv2i is the mean-squared
thermal velocity of the heavy quark [6]. The quark mass
dependence of  enters through hv2i. At the leading order
in 1/M , hv2i = 3T/M . In this way, B controls the quark
mass dependence of .

Lattice QCD calculations of B rely on accessing
⇢B(!, T ) from the correlator [6]

GB(⌧, T ) =
3X

i=1

hReTr [U(�, ⌧)Bi(x, ⌧)U(⌧, 0)Bi(x, 0)]i
3 hReTrU(�, 0)i ,

(3)
where � = 1/T is the inverse temperature, ⌧ is the Eu-
clidean time separation of the B operators, and U(⌧1, ⌧2)
is a thermal Wilson line connecting the B-fields located
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Heavy quark di�usion coe�cient with gradient flow Viljami Leino
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Figure 5: Our result of ^E (Grey diamond) compared to existing lattice results. Points that are at the same
temperature, have been slightly shifted horizontally for better visibility.

time by setting ⌘0 to zero, we can arrive to a scale:

`opt
l = (

p
�l)1�W0/V0 · (8gF)�W0/(2V0) , � = exp


134
35

� 8c2

5
� ln 4

�
, (10)

which will give correct dUV up to a multiplicative constant /flow.

From our previous study [11], we know that the NLO behavior is not quite enough to capture
the zero temperature part of the Euclidean correlators, hence an additional normalization constant
⇠= needs to be introduced as a fit parameter. For chromo-magnetic correlators, we will absorb the
unknown constant /flow into ⇠=. Furthermore, we assume that dE,B(l,)) = dIR(l,)) for l < lIR

and dE,B(l,)) = dUV
E,B(l,)) for l > lUV, where lIR and lUV are the limiting values of l for

which we can trust the above behaviors. In the region lIR < l < lUV, the form of the spectral
function is generally not known. Hence, for a given value of ^E,B, we construct the model spectral
function that is given by dUV

E,B in l > lUV, dIR
E,B in l < lIR, and vary various forms of dE,B(l) for

the intermediate lIR  l  lUV such that the total spectral function is continuous. For the exact
functional forms, we refer the reader to our main paper [20].

We now hold all the information needed to extract ^E and ^B. The extraction of ^E then
proceeds as follows. We take the continuum limit data at the zero flow time limit and perform a
least squares fit to Eq. (2) with our set of di�erent spectral function models. In order to estimate
systematics, we vary the range of points included in the fits by dropping certain amount of early
points g)min, we vary the scale with a factor of two, and we use multiple di�erent spectral function
models. For ^E we then get as a final result:

1.70  ^E

)3
 3.12 , at ) = 1.5)c , and 0.02  ^E

)3
 0.16 , at ) = 104)c . (11)

The result for ) = 1.5)c is in full agreement with the existing results. We show this in Fig. 5 for
the spatial di�usion coe�cient ⇡s = 2)2/^. For ) = 104)c, we are in agreement with our previous
result 0 < ^E/)3 < 0.1 [11]. The new result has a slightly larger errors due to gradient flow analysis
having more strict fit regimes. However, we can for the first time observe a nonzero minimum for
^E/)3 at very large temperature.

6

Leino et al. 2212.1094
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• Recently, unquenched case, with  corrections

•  and determined in a  
quasi-particle model. The latter 
multiplies the magnetic contribution

• Very mild mass dependence

v2

⟨p2⟩ ⟨v2⟩

Heavy quark diffusion on the lattice

Altenkort et al. 2311.01525 (2021)

3

FIG. 1. Left: Scale dependence of Gphys.
B [cf Eq. (5)] at T = 195 MeV. Right: Temperature dependence of Gphys.

B for µ̄T /T =

19.18 and µ̄⌧F/µF = 1.0. The dashed curves denote the central values of the smax-model fit to Gphys.
B with NLO ⇢uv at scale

µ =
p

(0.13306!)2 + µ2
DR.
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FIG. 2. Lattice QCD (LQCD) results for the spatial di↵usion
coe�cients, Ds, for the charm, bottom and infinitely-heavy
quarks compared with those from the quasi-particle model
(QPM) [24] and the T-matrix approach [25]. Also shown are
the infinitely-heavy quark di↵usion coe�cients from the AL-
ICE collaboration’s phenomenological estimate [26, 27], NLO
perturbative calculation [28] and AdS/CFT estimate at a cer-
tain value of � [8]. The width of the NLO perturbative QCD
band corresponds to the variation of the renormalization scale
from µ = 2⇡T (upper boundary of the orange band) and
µ = 4⇡T (lower boundary).

(plaw) model, ⇢plaw, which is ⇢ir

B(!) up to ! = !ir and

⇢uv,phys

B (!) above ! = !uv. In between, it is connected
by a power-law curve ⇢B(!) = c !p. The parameters

c and p are chosen to provide continuity at the bound-
ary. Physically motivated choices of these boundaries are
!ir = T and !uv = 2⇡T [7].

⇢max, ⇢smax, and ⇢plaw also depend on the intermediate
MS renormalization scale µ. For reasons discussed in
the Supplemental Material [13], we consider two options
µ =

p
(0.13306!)2 + µ2

DR
and µ =

p
4!2 + µ2

DR
, where

µDR ⇡ 9.1T is a typical thermal scale inferred from the
high temperature three dimensional e↵ective theory [34].

Results.— Combining di↵erent choices of (1) µ̄T and
µ̄⌧F in Gphys.

B , (2) ⇢uv,phys.
B (!, µ) and µ, and (3) three in-

terpolating models ⇢max, ⇢smax, and ⇢plaw, we carry out
24 di↵erent fits for K and B on each bootstrap sample
of gauge configurations at each T . The final result for
B at each T is obtained from the median and 68% con-
fidence limit of the distribution of all the bootstrap sam-
ples over gauge configurations and fit forms and, thus,
include both statistical as well as systematic errors aris-
ing from di↵erent model and scales choices. We find
B(T = 195 MeV) = 10.29+2.79

�3.71T
3, B(T = 220 MeV) =

8.85+2.30
�3.17T

3, B(T = 251 MeV) = 7.20+1.99
�2.84T

3, and

B(T = 293 MeV) = 4.13+2.12
�1.90T

3, which are of similar
magnitude to E obtained for the same ensembles [7].
The B for 2+1 flavor QCD turns out be much larger
than those from quenched QCD [20, 30] at the same val-
ues of T/Tc. For further details on the fits and results
see Supplemental Material [13].

The hv2i appearing in Eq. (2) can be obtained ei-
ther from the low-frequency part of the spectral func-
tion corresponding to the net-flavor current [9, 35] or in
the quasi-particle model with a temperature dependent
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We present the first study of the quark mass dependence of the heavy quark momentum and spatial
di↵usion coe�cients using lattice QCD with light dynamical quarks corresponding to a pion mass of
320 MeV. We find that, for the temperature range 195 MeV < T < 293 MeV, the spatial di↵usion
coe�cients of the charm and bottom quarks are smaller than those obtained in phenomenological
models that describe the pT spectra and elliptic flow of open heavy flavor hadrons.

Introduction.– Heavy-ion experiments at high energies
hint toward a rapid thermalization of heavy (charm and
bottom) quarks. These observations are surprising since
the relaxation time of a heavy quark immersed in a
quark-gluon plasma (QGP) is expected to be M/T times
larger than the relaxation time of the light bulk degrees
of freedom constituting the QGP, where M is the heavy
quark mass [1, 2] and T is the temperature of the QGP.
These experimental observations corroborate the picture
that the QGP created in such high-energy heavy-ion col-
lisions is an almost perfect fluid, see Refs. [3–5]. This
makes the heavy quark di↵usion coe�cient one of the
fundamental transport properties of the QGP, along with
other transport coe�cients such as shear and bulk vis-
cosities.

The heavy quark momentum di↵usion coe�cient, , is
defined as the average momentum transfer squared to a
heavy quark from the medium per unit time, and thus
characterizes the kinetic relaxation of heavy quarks to-
ward thermal equilibrium. One can also define the spa-
tial heavy quark di↵usion coe�cient Ds in terms of the
conserved net heavy flavor number through the usual
Kubo formula. This spatial heavy quark di↵usion co-
e�cient will depend on M , and also has a well defined
limit when M goes to zero. Close to equilibrium, in the
limit M � T , the momentum and spatial heavy quark
di↵usion coe�cients are related [2, 6],

Ds =
2T 2


· hp2i
3MT

, (1)

where hp2i is thermal averaged momentum squared of the
heavy quark.

Experimentally measured pT spectra and the elliptic
flows of open charm and open bottom hadrons provide
information on the degree of thermalization of the heavy
quarks in the QGP, see Refs. [3–5] for reviews. Ds can
be estimated by fitting these experimental measurements
using phenomenological transport models, see Refs. [3–5].
A key ingredient of these transport models is an e↵ective

momentum-dependent heavy-quark di↵usion coe�cient,
which in turn may depend on some e↵ective in-medium
cross sections. The Ds appearing in the Kubo formula
can be obtained as the zero-momentum limit of this ef-
fective di↵usion coe�cient.

Very recently, Ds has been calculated in 2+1 flavor
QCD for infinitely heavy quarks [7]. This QCD result
for the infinite-mass limit turns out to be smaller than
the phenomenological estimate of Ds for the charm and
bottom quarks. This begs the question whether these
discrepancies arise solely due to the mass dependence of
Ds. In this Letter we address this question by presenting
first lattice QCD calculations of the mass-dependent Ds

with light dynamical quarks.
Theoretical framework.– For M � T ,  can be calcu-

lated using heavy quark e↵ective theory [6, 8, 9]. In this
framework  is expressed in terms of the correlation func-
tion of chromo-electric (E) and chromo-magnetic (B)
fields connected by fundamental Wilson lines [6, 8, 9].
In this e↵ective theory

 = E +
2

3
hv2iB , (2)

where E,B(T ) = 2T lim!!0 [⇢E,B(!, T )/!] [6, 9], ⇢E,B

are the spectral functions corresponding to the E and B
field correlation functions, and hv2i is the mean-squared
thermal velocity of the heavy quark [6]. The quark mass
dependence of  enters through hv2i. At the leading order
in 1/M , hv2i = 3T/M . In this way, B controls the quark
mass dependence of .

Lattice QCD calculations of B rely on accessing
⇢B(!, T ) from the correlator [6]

GB(⌧, T ) =
3X

i=1

hReTr [U(�, ⌧)Bi(x, ⌧)U(⌧, 0)Bi(x, 0)]i
3 hReTrU(�, 0)i ,

(3)
where � = 1/T is the inverse temperature, ⌧ is the Eu-
clidean time separation of the B operators, and U(⌧1, ⌧2)
is a thermal Wilson line connecting the B-fields located
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 on the lattice?γ
• If we wanted the heavy-quark , all would be well* 

 
 
Eller JG Moore PRD99 (2019)

• Unfortunately, we really need the adjoint,  version

• Define 

• Complicated on the lattice because perimeter divergence not 
compensated by Polyakov loop denominator

• Need to reconstruct spf

γQ

QQ̄

GQQ̄
E (τ) =

g2TF

3Nc
⟨Ea

i (τ)Uab(τ,0)Eb
i (0)⟩

γQ = − ∫
β

0
dτ GE(τ)

vacuum subtracted
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 on the lattice?γ
• If we wanted the heavy-quark , all would be well* 

 

• Unfortunately, we really need the adjoint,  version

• Define 

• Need  

 
Eller JG Moore PRD99 (2019) Scheihing-Hitschfeld Yao PRD108 (2023)

γQ

QQ̄

GQQ̄
E (τ) =

g2TF

3Nc
⟨Ea

i (τ)Uab(τ,0)Eb
i (0)⟩

γQQ̄ = − ∫
β

0
dτ GQQ̄

E (τ) − ∫
dω
2π

1 + 2nB(ω)
ω

ρQQ̄
E (ω)

γQ = − ∫
β

0
dτ GE(τ)

vacuum subtracted
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 on the lattice?γ

• Unfortunately, we really need the adjoint,  version

• Define 

• First attempts at lattice determinations of  are ongoing, using 
gradient flow and fitting or using the renormalization constant of 
Polyakov loops to subtract the perimeter divergence 
Leino 2401.06733

• Not clear thus at the moment if the two  are different in weakly or 
strongly-coupled QCD

QQ̄

GQQ̄
E (τ) =

g2TF

3Nc
⟨Ea

i (τ)Uab(τ,0)Eb
i (0)⟩

GQQ̄
E (τ)

κ
37



A puzzle from holography
• It was recently determined using AdS/CFT that  at 

infinite 

• This arises from a spectral function that vanishes at non-positive 
frequencies 
Nijs Scheihing-Hitschfeld Yao JHEP0623 (2023)

• This is different from the holographic result  
Casalderrey-Solana Teaney PRD74 (2006)

• Not clear why this striking difference. “  operator more vacuum-
like in holography’’ B. Scheihing-Hitschfeld, any misinterpretation/
misphrasing my own

γ𝒩=4
QQ̄ = κ𝒩=4

QQ̄ = 0
λ

κ𝒩=4
Q = λπT3

QQ

38



39

Heavy quark diffusion out of equilibrium
5

The e↵ective infrared temperature T⇤ is given by

T⇤ =
I

J
, (29)

where

I =
1

2

Z
d3p

(2⇡)3
f(p)(1 + f(p)) (30)

J =

Z
d3p

(2⇡)3
f(p)

p
=

m2
D

4�
. (31)

Similarly to  and mD, T⇤ is also a↵ected by the IR reg-
ulator pmin. Thus we compute the corresponding equi-
librium value by taking into account these e↵ects both in
mD and in the momentum integral. This is discussed in
more detail in Appendix A 3 b. In thermal equilibrium in
the presence of the IR regulator, T⇤ is given by Eq. (A15).

Slightly di↵erent definitions of T⇤, based on other in-
tegral moments, have been also introduced in the litera-
ture [42], but we do not consider them here.

4. Energy momentum tensor

The components of the energy momentum tensor are
obtained as moments of the distribution function by

Tµ⌫ = ⌫g

Z
d3p

(2⇡)3
pµp⌫

p
f(p). (32)

The components relevant for this paper are

Txx = ⌫g

Z
d3p

(2⇡)3
f(p)

p2T
p

cos2 � (33)

Tyy = ⌫g

Z
d3p

(2⇡)3
f(p)

p2T
p

sin2 � (34)

Tzz = ⌫g

Z
d3p

(2⇡)3
f(p)

p2z
p
. (35)

They are connected to the longitudinal and transverse
pressure by

PT =
Txx + Tyy

2
(36)

Pz = Tzz. (37)

The temporal component of the energy-momentum ten-
sor corresponds to the energy density T00 ⌘ ".

III. RESULTS

We start by discussing the bottom-up isotropization
process and how it is reproduced in our simulations in
Sec. IIIA. We will also discuss how we highlight di↵erent
stages of the isotropization process. In Sec. III B we will
explain how we compare our  results out of equilibrium

10�2 10�1 100

hp�fi/hpi

100

101

102

P
T
/P

L

� = 0.5

� = 1
� = 2

� = 5 � = 10

� = 10

� = 4

FIG. 1. Occupation number as a function of anisotropy as in
[35]. The markers indicate di↵erent stages of the bottom up
thermalization as described in the text. The color coding of
the lines indicates the coupling used in the simulation, and
all figures use the same color coding. Full lines correspond
to the ⇠ = 10 initial condition (19), dash-dotted lines to the
⇠ = 4 initial condition (20).

to thermal values, and especially how we choose the cor-
responding matching scales. The comparison is then car-
ried out in Sec. III C, first without distinguishing between
directions. Then in Sec. IIID we discuss the transverse
and longitudinal di↵usion coe�cients separately. In or-
der to better understand the observed time-evolution of
, we will consider how the matching scales evolve during
the bottom-up isotropization compared to equilibrium in
Sec. III E. Finally, we will derive simple parametric esti-
mates that can be used to explain our results in Sec. III F.

A. Di↵erent stages of the bottom up
thermalization scenario

Our kinetic theory simulations follow the di↵erent
phases of the bottom-up thermalization scenario [34]. It
consists of the following stages: during the first stage
the overoccupied gluons become more dilute as the sys-
tem expands, and consequently the occupation number
of the hard gluons becomes of the order of unity fh ⇠ 1

at time scale Qs⌧ ⇠ ↵�3/2
s . At this point the system is

no longer describable with classical fields. In the second
stage hard gluons radiate softer gluons, creating a soft
thermal bath. Remarkably, at the end of this process
the hard gluons become underoccupied fh ⇠ ↵s. This

occurs at the timescales Qs⌧ ⇠ ↵
�5/2
s . In the final stage,

the hard particles lose their energy to the soft thermal
bath. For a review on the thermalization processes see
e.g. [43, 44].

In this scenario, the system is expected to thermalize

6

parametrically on a timescale of the order of [34]

⌧BMSS = ↵
�13/5
s /Qs, (38)

where ↵s = �
4⇡Nc

. We will therefore use this quantity
to rescale the time in our figures. Note that an alter-
native time scale, the hydrodynamical relaxation time
⌧R = 4⇡⌘/s(�)

T with shear viscosity ⌘ and entropy density
s, is also often used to rescale the time variable. We will
investigate the universality of these time scales for di↵er-
ent observables and couplings in a separate paper, while
employing only ⌧BMSS in the present work.

The bottom-up thermalization process is shown in
Fig. 1 in terms of the anisotropy PT/PL and the mean
occupation number hp�fi/hpi for di↵erent couplings as in
Ref. [35]. In order to illustrate how observables behave
during di↵erent stages of the thermalization process, we
have placed three time markers on the curves in Fig. 1.
The first marker (star) is placed during the highly occu-
pied regime, when f ⇠ 1/�. For smaller values of the cou-
pling this corresponds to maximal anisotropy. However,
for large couplings the first stage of the evolution pro-
ceeds di↵erently, and the anisotropy does not increase ini-
tially. Hence, we have chosen the occupancy as the crite-
rion for the time marker instead of maximum anisotropy.
The second marker (circle) is inserted at the minimum oc-
cupancy, which in the bottom-up thermalization scenario
is expected to be f ⇠ ↵s. The third marker (triangle) is
placed at PT/PL = 2. The purpose of this is to illustrate
when the system is approximately close to equilibrium.
We will use the same markers in other figures through-
out this paper to allow the reader to connect the time-
evolution of observables to the stages of the bottom-up
scenario.

The curves for di↵erent values of the coupling � also
use the same color coding in all figures throughout this
paper. The initial conditions with ⇠ = 10 from (19) are
shown as full lines. For comparison, we will often add
curves for the initial conditions with ⇠ = 4 in (20) as
more transparent dash-dotted lines.

We see from Fig. 1 that for the extremely anisotropic
initial condition (⇠ = 10) the bottom-up picture is better
realized at smaller values of the coupling. For interme-
diate couplings � = 2, 5, 10 the system does not expe-
rience an initial growth in anisotropy. Instead, the sys-
tem takes a more straightforward path to thermal equi-
librium, without resolving of the di↵erent stages of the
bottom-up picture in detail. However, the third stage of
the scenario is still visible and emerges after the circle
marker.

B. Comparing nonequilibrium to equilibrium

Our aim in this paper is to calculate the heavy quark
momentum di↵usion coe�cient  during the hydrody-
namization process in order to eventually assess the im-
portance and impact of the initial nonequilibrium evolu-

10�5 10�4 10�3 10�2 10�1 100

�/�BMSS

0.0

0.2

0.4

0.6

0.8
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�
/�

� eq

� = 10

� = 4

� = 0.5

� = 1.0

� = 2.0

� = 5.0

� = 10.0

FIG. 2. Ratio of  to the thermal value at the same energy
density " (top), the same screening mass mD (middle) and ef-
fective soft mode temperature T⇤ (bottom). We have applied
the Savitzky-Golay filter to smoothen the data. The filter is
also applied to all the following figures involving .

tion on heavy quark observables. To facilitate the quan-
titative interpretation we will mostly present our results
as ratios to the thermal equilibrium values. There is
no unique method to compare equilibrium and nonequi-
librium systems. A reasonable way to construct such

• Kinetic theory determination during bottom-up thermalization 
Boguslavski Kurkela Lappi Lindenbauer Peuron 2303.12520
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our parametric estimate is better than for mD, and T⇤
does not go below the thermal value in the underoccupied
regime, but is already close to unity.

Using the estimates for mD and T⇤, we obtain for the
heavy-quark di↵usion coe�cient



✏
eq

=
�f0
fBE
0

(f0 + 1)�
fBE
0 + 1

� . (47)

Plugging in the values for f0 and � during the evolution
(calculated from f0 and � in Figs. 1 and 5) leads to the
gray dotted curve in Fig. 8. We observe that the gen-
eral trend of enhancement followed by suppression and
equilibration is somewhat exaggerated by this paramet-
ric estimate. The transparent curves in Fig. 8 show the
estimate obtained using Eq. (40) with the actual calcu-
lated values of mD and T⇤ from Fig. 7. They exhibit the
same behavior in a less exaggerated way.

IV. COMPARISONS WITH GLASMA AND
LATTICE CALCULATIONS

A. Comparing with glasma

For a sensible comparison between our kinetic results
and  from the glasma stage, we first reproduce the en-
ergy density of the glasma by choosing Qs = 1.4 GeV as
in Ref. [21] at the initial time Qs⌧ = 1. The same value
is also obtained in [45] in order to achieve consistency
with the later hydrodynamic evolution.

Figure 9 shows the transverse and longitudinal di↵u-
sion coe�cients Glasma

T and Glasma
z , which correspond to

the situation of static quarks in the glasma [46], together
with our results denoted by T and z. The main obser-
vation is that during the quasiparticle phase,  is consid-
erably smaller than during the glasma stage at very early
times (note that the glasma results peak at O(10)GeV2

fm ).
Transverse and longitudinal di↵usion coe�cients behave
di↵erently – our result for T agrees with the glasma
around the star marker signaling large occupation num-
bers, which is within the overlapping validity range of
glasma and EKT. In contrast, the longitudinal coe�-
cients intersect close to the circle marker, and the transi-
tion is not smooth. The circle marker indicates that the
system is underoccupied, and hence the matching time
falls outside of the validity range of classical-statistical
simulations underlying the glasma description.

The main reason for this discrepancy is the qualita-
tively di↵erent behavior of  in the glasma framework.
We can always define the derivative of momentum broad-
ening and call it “di↵usion coe�cient” . This, however,
does not imply that the underlying behavior is that of dif-
fusion, corresponding to Langevin-type behavior for hp2i.
In the glasma, this manifests itself in the longitudinal di-
rection, where for large ⌧ momentum broadening turns
into momentum narrowing (Glasma

z becomes negative).
Thus, more research is needed to understand how the
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Qs = 1.4 GeV

�T

�z
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�Glasma
z

��
eq

Lattice

FIG. 9. Comparison of our results with the glasma results
from [46]. Blue curves correspond to the longitudinal dif-
fusion coe�cient and red curves to the transverse di↵usion
coe�cient. Dashed curves correspond to glasma results and
solid curves to our results. The brown data point with error
bars corresponds to the result of [47] at T = 1.5 Tc. The point
is placed at such a value of ⌧ that the nonequilibrium system
has the same temperature T" defined through energy density
as the lattice system.

transition from nondi↵usive to di↵usive behavior takes
place between the glasma and quasiparticle pictures.

Based on the data presented in Fig. 9, we can also esti-
mate the total e↵ect of momentum broadening during the
nonequilibrium evolution. It is given by the integrated
di↵usion coe�cient

hp2i =

Z
d⌧ 3(⌧). (48)

In the Bjorken hydro limit, we have " ⇠ ⌧�4/3 and T" ⇠

⌧�1/3. In a rough parametric estimate  ⇠ T 3, this leads
to  ⇠ 1/⌧ and hp2i ⇠ log(⌧), everything in units of
Qs. Thus, we expect the pre-equilibrium kinetic phase
of the evolution, roughly 0.1 � 1 fm, to have an equal
contribution to heavy quark di↵usion as the equilibrium
phase, roughly 1 � 10 fm. Integrating over the entire
EKT evolution, from ⌧ = 0.14 fm to ⌧ = 1 fm yields an
estimate hp2i = 0.9 GeV2.

Fig. 9 also features a datapoint for the lattice result,
which we will discuss in the following section IV B.

B. Comparing with lattice

For comparisons with lattice results, our main refer-
ence will be [47], where low-temperature (T = 1.5 Tc)
and high-temperature (T = 104 Tc) estimates for /T 3

are available. Other studies have also obtained compa-
rable results at similar temperatures [12, 17, 48].

The obvious approach is to compare systems with the
same temperature (defined by the energy density). This,

• Discrepancy with glasma due to non-diffusive evolution therein



41

Heavy quark diffusion out of equilibrium
• Classical-statistical 

calculation with relativistic 
heavy quarks 
Pandey Schlichting Sharma 
2312.12280

• Infinite mass limit agrees 
well with Boguslavski et al. 
JHEP0920 (2020)

• Charm not well described by 
quadratic fit: full mass 
dependence important

5

FIG. 4: The momentum di↵usion coe�cient  as a
function of inverse of bare quark mass, at di↵erent

times Qt = 500, 1000, 1500. Solid lines at the bottom
left corner correspond to the values obtained in the
infinite-mass limit using the color-electric correlator.

Shaded bands represent 1/m2 correction to the
infinite-mass limit.

scales.
Since a highly occupied gluonic plasma considered in

our analysis is believed to be produced in the initial
stages of heavy-ion collisions, our study re-emphasizes
the fact that a significant momentum broadening and
hence a build-up of elliptic flow of charm and bottom
quarks may already occur in the initial stages of heavy-
ion collisions [39, 40, 44, 45]. However, to unambiguously
confirm this, our calculation needs to be extended to an
expanding space-time geometry to properly capture the
dynamics of the correlated gluon fields in the Glasma.
Since our formalism for investigating the dynamics of
quark probes is quite general, one can also study the
dynamics of light-quark jets through a highly-occupied
non-Abelian plasma, which we would like to address in a
future study.
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Appendix A: Details of the momentum mode
occupancy distribution

When investigating the dynamics of heavy and light
flavor quarks, we start with a single quark in a fixed
momentum mode labelled by momentum P, spin polar-
ization s and color � and let it evolve in the background
of gauge fields in the self-similar regime up to some time
t0. By following the methodology of [56–58] the associ-
ated fermionic field operator  (t0,x) can be defined in
terms of the time-independent operators b†�,s(t = 0,p)

and d†�,s(t = 0,p) and time dependent wavefunctions �u,v
�,s

as,

 (t0,x) =
1

p
N3

X

�,s,p

h
�u
�,s(t

0,x)b�,s(t = 0,p) +

�v
�,s(t

0,x)d†�,s(t = 0,p)
i
, (4)

where for our initial conditions the creation/annihilation
operators satisfy

hb†�,m(t = 0,p)b�0,n(t = 0,p0)i = ��,�0�m,n�p,p0�p0,P

hd†�,m(t = 0,p)d�0,n(t = 0,p0)i = 0 , (5)

Now in order to extract the momentum distribution of
quarks inside the medium, we make use of the fact that
at any time t, the fermion field operator  (t,x) can be
decomposed in terms of time-evolved creation and anni-
hilation operators, labeled by the momentum p, the color
index � and spin index s , as

 (t,x) =
1

p
N3

X

�,s,p

⇣
u�,s(p) b�,s(t,p)e

�ip.x +

v�,s(p)d
†
�,s(t,p)e

+ip.x
⌘
. (6)

By inverting the above expression using the orthonor-
mality of Dirac spinors, we can obtain then the time-
dependent creation operators b�0,s0(t,q) in terms of
Fourier transform of the time-evolved fermion fields as,

b�0,s0(t,q) =
X

x

u†
�0,s0(q) (t,x) e

+iq.x . (7)

Now, performing Fourier transform of the quark fields
and substituting them back in Eq. 7, we get the time-
evolved annihilation operator b�,s(t,q) entirely in terms

of time-dependent fermionic wavefunctions �u,v
�,s(t

0
,x).

The momentum mode occupancy distribution of fermions
in a particular momentum state labelled by q is defined
as the expectation value of the number density operator
at that particular value of the momentum,

dN

d3q
=

1

2Nc

X

�0,s0

hb†�0,s0(t
0,q)b�0,s0(t

0,q)i . (8)



• Correlators of chromoelectric (and magnetic) fields on a timelike 
Wilson line are key ingredients for heavy quark diffusion and 
quarkonium modification

• Importance of proper definition of the Wilson line structure in 
the two cases. Unclear if the two definitions of  are distinct

• Lots of recent lattice determinations, gradient flow very 
important. Mild (rescaled) temperature dependence

• Tackling early-stage dynamics

κ

Conclusions
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Basic picture of weakly coupled plasma – hard particles and soft fields

Hard particle modes, P ⇠ T

Soft field modes, P ⇠ gT

↵s = g2/4⇡

• The soft fields can be treated classically since their occupation number is large

nB(!) =
1
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' T

!
⇠ 1

g

Figure by D. Teaney

Hard particles, P~T

Soft field 
modes 
P~gT

↵s =
g2

4⇡

• Hard (quasi)-particles carry most of the stress-energy tensor. (Parametrically) 
largest contribution to thermodynamics

The weak-coupling picture

5
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Hard particles, P~T

Soft field 
modes 
P~gT

↵s =
g2

4⇡

The weak-coupling picture

• The gluonic soft fields have large occupation numbers ⇒ they can be treated 
classically

nB(!) =
1

e!/T � 1

!⇠gT
' T

!
⇠ 1

g



Figure 10. Examples of linear divergences. The divergences arise when the vertices inside the
dashed box are contracted to one point.

Linear divergences are proportional to the length of the contour and can be removed by

a factor that can be interpreted as a mass term; dimensional regularization removes these

power-like divergences automatically [10]. Examples of diagrams with linear divergences

are given in Fig. 10. In the notation adopted here, which follows the one in Ref. [14], the

dashed box stands for integration regions where all vertices inside the box are contracted

to one point. If the box includes a singular point, then the vertices are contracted to that

point, otherwise they can be contracted anywhere inside the box.

Line vertex divergences can be removed by using renormalized fields and couplings [11].

Cusp divergences arise from diagrams and integration regions as those depicted in Fig. 11.

The one-loop divergence has been given in Eq. (3.6) as a function of the cusp angle γ.

From it the renormalization constant for a non-cyclic Wilson loop (i.e. a Wilson loop with

a time extension smaller than 1/T ) with four right-angled cusps can be inferred to be in the

MS-scheme Z = exp
[
−2CFαsµ−2ε/(πε̄)

]
. Cusp divergences are absent in a cyclic Wilson

loop.

γ γ γ

Figure 11. Contributions to a cusp divergence at O (αs).

We turn now to the intersection divergences of the cyclic Wilson loop, which are our

main point of interest. They only appear when all vertices of a diagram or subdiagram are

contracted to an intersection point. In all cases where at least one vertex is on the string,

if every vertex of the diagram can be contracted to the intersection, then the contribution

of the diagram cancels because of cyclicity. If all vertices are on a quark line, then the dia-

gram contributes equally to the Polyakov loop, which is finite after charge renormalization.

This leads to the conclusion that a connected diagram cannot give rise to an intersection

divergence, because either all vertices can be contracted to an intersection point, in which

case either the divergence cancels because of cyclicity or because it contributes to the

– 18 –

Renormalization of Wilson lines and loops

46

•All Wilson lines have a linear UV divergence proportional to  
their length ⇒A Wilson loop with a smooth, nonintersecting  
contour is finite in dimensional regularization after charge  
renormalization but needs multiplicative renormalization on the lattice 

•Cusps in the contour introduce UV cusp divergences, renormalized 
multiplicatively through the cusp anomalous dimension, which only depends on 
the angle. Known in QCD at least to NLO 
 
 
Polyakov NPB84 (1980) Dotsenko Vergeles NPB169 (1980) Brandt Neri Sato PRD24 
(1981) Korchemsky Radyushkin NPB283 (1987) 

Figure 6. The contours for the non-cyclic (left) and the cyclic Wilson loop (middle) are shown.
One can see that the cusp points turn into intersection points. The contour for the Polyakov loop
correlator is shown on the right.

Figure 7. The two possible path orderings for a loop with one intersection

sets of loops and loop correlators that mix under renormalization. These sets consist of all

possible path ordering prescriptions for contours that occupy the same points in space-time

and retain the same direction everywhere except at the intersection points. An illustration

of this is given in figure 7 for the simplest case of a smooth curve that intersects with itself

once at a single point.

Following this contour and arriving at the intersection point, there are two possible

ways how to go on: one can either go straight ahead, thus following the rest of the contour,

or make a turn onto the way one has come, splitting the contour into two separate loops.

To highlight this last feature the two loops on the right of figure 7 are drawn apart, while

it should be understood that they still connect at the intersection point.

Each of those two loops on the right, taken on its own, would have a normal cusp and

be renormalizable through a multiplicative constant. However, when taking the average

over the product of both loops there is a new source of divergences from gluon exchanges

between the two loops. In order to get rid of those one has to add a multiple of the

expectation value of the smooth loop on the left, for which similar divergences arise at the

intersection. By choosing appropriate coefficients, linear combinations of both loops can

be made finite.

In general a loop may cross an intersection point more than twice and the angles at

which the different lines enter that point may all be different. In that case the set of all

associated loops is renormalized by a matrix of renormalization constants, which depend

only on the angles at the intersection point. When a loop has more than one intersection

point, then the set of associated loops takes on a tensor like structure with a renormalization

matrix for each intersection point. If there are additional cusps present, then those can be

taken care of by multiplicative constants. So the general formula looks like this:

– 9 –
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• Competition between expansion and interaction, attractor solution when 
they balance out 
 

• Expansion is driven by the specifics of the heavy-ion collision and the initial 
state, drives the system away from equilibrium. Interaction among the 
constituents tends to isotropize the system.

Bottom-up thermalisation
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“Bottom-up” thermalisation scenario Baier, Mueller, Schi↵, and Son (2001)[10]

Evolution of initially over-occupied hard gluons p ⇠ Qs � ⇤QCD

pz pz pz

pxpxpx

2 $ 2 broadening collinear cascade mini-jet quench

Kurkela and Zhu (2015), Keegan, Kurkela, AM and Teaney (2016), Kurkela, AM, Paquet, Schlichting and Teaney (2018) [6–9]
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Motivation: Bottom-up thermalization

Anisotropy

Occupancy

f~α
−1
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L
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Initial condition: Qt~1

Underoccupied Overoccupied

Radiational 
breakup Qt~α−13/5

CGC: Initial condition overoccupied f (Q) ⇠ 1/↵

Expansion makes system underoccupied (f (Q) ⌧ 1) before
thermalizing Baier et. al hep-ph/0009237, AK, Moore 1108.4684

fig. Kurkelafig. Mazeliauskas

Baier Mueller Schiff Son (2001) Kurkela Moore (2011)

• Initially, strong isotropizing effect of transverse-momentum 
broadening 

• Later, transverse-momentum broadening acts as the driver of 
bremsstrahlung in the cascade and mini-jet quench, rapid transfer 
of energy from UV to IR without intermediate accumulation

∝ ̂q ≡ ⟨k2
⊥⟩/t
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• From numerical solution of LO* kinetic theory

“Bottom-up” thermalisation scenario Baier, Mueller, Schi↵, and Son (2001)[10]

Evolution of initially over-occupied hard gluons p ⇠ Qs � ⇤QCD
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2 $ 2 broadening collinear cascade mini-jet quench

Kurkela and Zhu (2015), Keegan, Kurkela, AM and Teaney (2016), Kurkela, AM, Paquet, Schlichting and Teaney (2018) [6–9]
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Kurkela Zhu PRL115 (2015)

Bottom-up thermalisation: numerical solution
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C2$2 + C1$2
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