TECHNISCHE UNIVERSITAT MÜNCHEN

XYZs
 with Effective Field Theories

Nora Brambilla

Munich Data Science Institute

cm BESII B @ATAS

Plots for each experiment available at our
upcoming experiments Electron ion collider STCF

 Many scales: a challenge and an opportunity

Quarkonium scales

$$
\begin{aligned}
M(Y(1 S)) & =9460 \mathrm{GeV} \\
M(J / \Psi) & =3097 \mathrm{GeV}
\end{aligned}
$$

$$
\begin{gathered}
\text { THE MASS SCALE IS PERTURBATIVE } \\
m_{Q} \gg \Lambda_{\mathrm{QCD}} \\
m_{b} \simeq 5 \mathrm{GeV} ; m_{c} \simeq 1.5 \mathrm{GeV}
\end{gathered}
$$

Normalized with respect to $\chi_{b}(1 P)$ and $\chi_{c}(1 P)$

Quarkonium scales

NR BOUND STATES HAVE AT LEAST 3 SCALES

THE SYSTEM IS NONRELATIVISTIC(NR)

$$
\begin{aligned}
& \Delta E \sim m v^{2}, \Delta_{f s} E \sim m v^{4} \\
& v_{b}^{2} \sim 0.1, v_{c}^{2} \sim 0.3
\end{aligned}
$$

$$
\begin{aligned}
& \text { The Mass scale is perturbative } \\
& m_{Q}>\Lambda_{\mathrm{QCD}} \\
& m_{b} \simeq 5 \mathrm{GeV} ; m_{c} \simeq 1.5 \mathrm{GeV}
\end{aligned}
$$

Quarkonium scales

NR BOUND STATES HAVE AT LEAST 3 SCALES

THE SYSTEM IS NONRELATIVISTIC(NR)

$$
\begin{aligned}
& \Delta E \sim m v^{2}, \Delta_{f s} E \sim m v^{4} \\
& v_{b}^{2} \sim 0.1, v_{c}^{2} \sim 0.3
\end{aligned}
$$

and Λ_{QCD}

$$
\begin{aligned}
& \text { THE MASS SCALE IS PERTURBATIVE } \\
& m_{Q} \gg \Lambda_{\mathrm{QCD}} \\
& m_{b} \simeq 5 \mathrm{GeV} ; m_{c} \simeq 1.5 \mathrm{GeV}
\end{aligned}
$$

$$
\begin{aligned}
M(Y(1 S)) & =9460 \mathrm{GeV} \\
M(J / \Psi) & =3097 \mathrm{GeV}
\end{aligned}
$$

Normalized with respect to $\chi_{b}(1 P)$ and $\chi_{c}(1 P)$

- The different quarkonium radii provide different measures of the transition from a Coulombic to a confined bound state.

quarkonia probe the perturbative (high energy) and non perturbative region (low energy) as well as the transition region in dependence of their radius r
- The different quarkonium radii provide different measures of the transition from a Coulombic to a confined bound state.

quarkonia probe the perturbative (high energy) and non perturbative region (low energy) as well as the transition region in dependence of their radius r

Quarkonia are probe of QGP formation

The present revolutions: nuclear matter phase diagram

Quarkonia are probe of QGP formation

$$
\begin{aligned}
& \text { O CMS PLB } 790(2019) 270 \\
& \text { ALICE PLB } 822(2021) \\
& \text { ATLAS PRC } 107 \\
& \text { AL } 2023)
\end{aligned} 054912
$$

The present revolutions: nuclear matter phase diagram

Quarkonia are probe of QGP formation

Matsui Satz 1986
idea of color
screening
in medium

Experimental measurements:
$R_{A A}$ is the nuclear modification factor $=$ yield of quarkonium in $\mathrm{PbPb} /$ yield in pp.


```
o CMS PLB 790 (2019) 270
ALICE PLB 822 (2021) 136579
ATLAS PRC 107 (2023) 054912
```

Today a new paradigm emerged beyond screening relating the R_AA to the nonequilibrium evolution of the heavy pair in medium: medium induced dissociation and color singlet/octet recombination. Quantum phenomenon to be addresses with quantum master equations
production in heavy ions where the strongly coulpled QCD medium is formed
surprisingly narrow above strong decay thresholds, with surprising decay patterns

Sizeable hadronic prompt production cross sections (Tevatron, CMS, ATLAS, LHCb)
$\mathrm{LHCb} \mathrm{pp}, \sqrt{\mathrm{s}}=8 \mathrm{TeV}, 2<\mathrm{y}<4.5, \mathrm{p}_{\mathrm{T}}>5 \mathrm{GeV} / \mathrm{c}$
LHCb pPb (Pbp), $\sqrt{\mathrm{s}_{\mathrm{NN}}}=8.16 \mathrm{TeV}, 1.5<\mathrm{y}<4(-5<\mathrm{y}<-2.5), \mathrm{p}_{\mathrm{T}}>5 \mathrm{GeV} / \mathrm{c}$
CMS $\mathrm{PbPb} \sqrt{\mathrm{s}_{\mathrm{NN}}}=5.02 \mathrm{TeV},|\mathrm{y}|<0.9, \mathrm{p}_{\mathrm{T}}>15 \mathrm{GeV} / \mathrm{c}$

opens completely new perspectives!
production in heavy ions where the strongly coulpled QCD medium is formed

surprisingly narrow above strong decay thresholds, with surprising decay patterns

Sizeable hadronic prompt production cross sections (Tevatron, CMS, ATLAS, LHCb)

XYZs not merely composite particles, have unique properties

Novel strongly correlated exotics systems

It is of fundamental interest to provide first principle predictions for spectra, transitions, production and medium evolution from OCD

Close/above threshold new degrees of freedom like glue and light quarks are nonperturbative part in the binding.

Close/above threshold new degrees of freedom like glue and light quarks are nonperturbative part in the binding. - Models assume some special degrees of freedom and a model interaction

- Lattice calculation of exotics masses are limited by the large number of open decay modes and they are not Immediately suited for production and in medium studies

Close/above threshold new degrees of freedom like glue and light quarks are nonperturbative part in the binding.

- Lattice calculation of exotics masses are limited by the large number of open decay modes and they are not Immediately suited for production and in medium studies

We need a flexible approach rooted in OCD that can address all properties of XYZ spectra, production and propagation in medium : Born Oppenheimer Effective Field Theory (BOEFT)

For quarkonium to become a probe of strong interactions, it should be treated in QCD :a very hard problem
Close to the bound state $\alpha_{\mathrm{S}} \sim v$

For quarkonium to become a probe of strong interactions, it should be treated in QCD :a very hard problem

Close to the bound state $\alpha_{\mathrm{S}} \sim v$

:a very hard problem

Close to the bound state $\alpha_{\mathrm{S}} \sim v$

QQbar systems with NR EFT

Color degrees of freedom
$3 \times 3=1+8$ singlet and octet QQbar

Hard

Soft

 (relative momentum)Ultrasoft (binding energy)

$$
\left\langle O_{n}\right\rangle \sim E_{\lambda}^{n}
$$

QQbar systems with NR EFT

Color degrees of freedom
$3 \times 3=1+8$ singlet and octet QQbar

Hard

$$
\frac{E_{\lambda}}{E_{\Lambda}}=\frac{m v}{m}
$$

$$
\mathcal{L}_{\mathrm{EFT}}=\sum_{n} c_{n}\left(E_{\Lambda} / \mu\right) \frac{O_{n}(\mu, \lambda)}{E_{\Lambda}}
$$

$$
\left\langle O_{n}\right\rangle \sim E_{\lambda}^{n}
$$

QQbar systems with NR EFT

Color degrees of freedom
$3 \times 3=1+8$ singlet and octet QQbar

Hard

$$
\frac{E_{\lambda}}{E_{\Lambda}}=\frac{m v}{m}
$$

$$
\frac{E_{\lambda}}{E_{\Lambda}}=\frac{m v^{2}}{m v}
$$

Ultrasoft (binding energy)

$$
\mathcal{L}_{\mathrm{EFT}}=\sum_{n} c_{n}\left(E_{\Lambda} / \mu\right) \frac{O_{n}(\mu, \lambda)}{E_{\Lambda}} \quad\left\langle O_{n}\right\rangle \sim E_{\lambda}^{n}
$$

$$
\mathcal{L}_{\mathrm{NRQCD}}=\sum_{n} c\left(\alpha_{\mathrm{S}}(m / \mu)\right) \times \frac{O_{n}(\mu, \lambda)}{m^{n}}
$$

 (pNRQCD)
 (pNRQCD)
 (pNRQCD)
 (pNRQCD)

- If $m v \gg \Lambda_{\mathrm{QCD}}$, the matching is perturbative Non-analytic behaviour in $r \rightarrow$ matching coefficients V

The gauge fields are multipole expanded: $A(R, r, t)=A(R, t)+\mathbf{r} \cdot \nabla A(R, t)+\ldots$
$\mathbf{R}=$ center of mass
$\mathbf{r}=Q \bar{Q}$ distance
$\mathcal{L}^{\mathrm{pNRQCD}}=\int d^{3} r \operatorname{Tr}\left\{S^{\dagger}\left(i \partial_{0}-\frac{\mathbf{p}^{2}}{m}-V_{S}+\cdots\right) S+O^{\dagger}\left(i D_{0}-\frac{\mathbf{p}^{2}}{m}-V_{O}+\cdots\right) O+\right.$ LO in r
$\left.+V_{A}\left(S^{\dagger} \mathbf{r} \cdot g \mathbf{E} O+O^{\dagger} \mathbf{r} \cdot g \mathbf{E} S\right)+\frac{V_{B}}{2}\left(O^{\dagger} \mathbf{r} \cdot g \mathbf{E} O+O^{\dagger} O \mathbf{r} \cdot g \mathbf{E}\right)\right\}+\ldots$
$-\frac{1}{4} F_{\mu \nu}^{a} F^{\mu \nu a}+\sum_{i=1}^{n f} \bar{q}_{i} i \not D q_{i}$

- If $m v \gg \Lambda_{\mathrm{QCD}}$, the matching is perturbative Non-analytic behaviour in $r \rightarrow$ matching coefficients V

The gauge fields are multipole expanded:

$$
A(R, r, t)=A(R, t)+\mathbf{r} \cdot \nabla A(R, t)+\ldots
$$

$$
\mathbf{R}=\text { center of mass }
$$

$$
\mathbf{r}=Q \bar{Q} \text { distance }
$$

$\mathcal{L}^{\mathrm{pNRQCD}}=\int d^{3} r \operatorname{Tr}\left\{S^{\dagger}\left(i \partial_{0}-\frac{\mathbf{p}^{2}}{m}-V_{S}+\cdots\right) S+O^{\dagger}\left(i D_{0}-\frac{\mathbf{p}^{2}}{m}-V_{O}+\cdots\right) O+\mathrm{LO}\right.$ in r
$\left.+V_{A}\left(S^{\dagger} \mathbf{r} \cdot g \mathbf{E} O+O^{\dagger} \mathbf{r} \cdot g \mathbf{E} S\right)+\frac{V_{B}}{2}\left(O^{\dagger} \mathbf{r} \cdot g \mathbf{E} O+O^{\dagger} O \mathbf{r} \cdot g \mathbf{E}\right)\right\}+\ldots$

$$
-\frac{1}{4} F_{\mu \nu}^{a} F^{\mu \nu a}+\sum_{i=1}^{n_{f}} \bar{q}_{i} i \not D q_{i}
$$

The matching coefficients are the Coulomb potential

$$
V_{S}(r)=-C_{F} \frac{\alpha_{\mathrm{S}}}{r}+\ldots
$$

Feynman rules

$$
V_{A}=1+\mathcal{O}\left(\alpha_{\mathrm{s}}^{2}\right), V_{B}=1+\mathcal{O}\left(\alpha_{\mathrm{s}}^{2}\right)
$$

$$
=\theta(t) e^{-i t\left(\mathbf{p}^{2} / m+V\right)}
$$

$$
\overline{\underline{ }}=\theta(t) e^{-i t\left(\mathbf{p}^{2} / m+V_{o}\right)}\left(e^{-i \int d t A^{\mathrm{adj}}}\right)
$$

$$
V_{o}(r)=\frac{1}{2 N} \frac{\alpha_{\mathrm{s}}}{r}+\ldots
$$

$$
=\mathrm{O}^{\dagger}\{\mathbf{r} \cdot g \mathbf{E}, \mathrm{O}\}
$$

Energies at order m alpha^5 (NNNLO)

$m \alpha_{\mathrm{S}}^{5} \ln \alpha_{\mathrm{s}}$ Brambilla Pineda Soto Vairo 99, Kniehl Penin 99 $E_{n}=2 m+\langle n| \frac{p^{2}}{m}+V_{s}|n\rangle+\langle n| —$ © ${ }^{\text {MNL }}|n\rangle$ $\left.E_{n}=\langle n| H_{s}(\mu)|n\rangle-i \frac{g^{2}}{3 N_{c}} \int_{0}^{\infty} d t\langle n| \mathrm{re}^{i t\left(E_{n}^{(0)}\right)}-H_{o}\right) \mathbf{r}|n\rangle\left\langle\mathbf{E}(t) \mathbb{E}(0) \underset{(\mu)}{\sim e^{n+n_{c}}}\right.$
$E_{n}^{(0)}-H_{o} \gg \Lambda_{\mathrm{QCD}} \Rightarrow\langle\mathrm{E}(t) \mathrm{E}(0)\rangle(\mu) \rightarrow\left\langle\mathrm{E}^{2}(0)\right\rangle$
$E_{n}^{(0)}-H_{o} \sim \Lambda_{\mathrm{QCD}} \Rightarrow$ no expansion possible, non-local local condensates as predicted in a condensates, analogous to the Lamb shift in QED paper bv Misha Voloshin in 1979
\rightarrow used to extract precise
(NNNLO)
determination of $m _c$ and $m _b$

Applications of weakly coupled pNRQCD include: precise alphas extraction from the static energy, ttbar production, quarkonia spectra, decays, El and MI transitions, QQq and QQQ energies, thermal masses and potentials

The degrees of freedoms now are

The degrees of freedoms now are

Use symmetry and scale separation: $m>\Lambda_{Q C D} \quad$ NRQCD holds
$\Lambda_{Q C D}>m v^{2}$ fast (gluons, light quarks) and slow (heavy quarks)
like in molecular physics (fast-electrons, slow nuclei)

The spectrum of static energies can be calculated in NRQCD

Symmetry of a system with a static
Q in x_1 and a Qbar in x_2

Irreducible representations of $D_{\infty h}$

- K : angular momentum of light d.o.f.
$\lambda=\hat{\boldsymbol{r}} \cdot \boldsymbol{K}=0, \pm 1, \pm 2, \pm 3, \ldots$
$\Lambda=|\lambda|=0,1,2,3, \ldots(\Sigma, \Pi, \Delta, \Phi, \ldots)$
- Eigenvalue of $C P: \eta=+1(g),-1(u)$
- σ : eigenvalue of relfection about a plane containing $\hat{\boldsymbol{r}}$ (only for Σ states)

The spectrum of static energies can be calculated in NRQCD

Symmetry of a system with a static
Q in x_1 and a Qbar in x_2

Irreducible representations of $D_{\infty h}$

- K : angular momentum of light d.o.f.
$\lambda=\hat{\boldsymbol{r}} \cdot \boldsymbol{K}=0, \pm 1, \pm 2, \pm 3, \ldots$ $\Lambda=|\lambda|=0,1,2,3, \ldots(\Sigma, \Pi, \Delta, \Phi, \ldots)$
- Eigenvalue of $C P: \eta=+1(g),-1(u)$
- σ : eigenvalue of relfection about a plane containing $\hat{\boldsymbol{r}}$ (only for Σ states)

$$
\mathcal{H}^{(0)}=\int d^{3} \mathbf{x} \frac{1}{2}\left(\boldsymbol{\Pi}^{a} \boldsymbol{\Pi}^{a}+\mathbf{B}^{a} \mathbf{B}^{a}\right)-\sum^{n_{f}} \bar{q} i \mathbf{D} \cdot \gamma q
$$

$$
\begin{align*}
& \mathcal{H}^{(0)}\left|\underline{n} ; \mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle^{(0)}=E_{n}^{(0)}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)\left|\underline{n} ; \mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle \tag{0}\\
& \left|\underline{n} ; \mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle^{(0)}=\psi^{\dagger}\left(\mathbf{x}_{1}\right) \chi\left(\mathbf{x}_{2}\right)\left|n ; \mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle^{(0)}
\end{align*}
$$ energies

$$
E_{n}^{(0)}(r)=\lim _{T \rightarrow \infty} \frac{i}{T} \log \left\langle X_{n}, T / 2 \mid X_{n},-T / 2\right\rangle
$$

$$
\left|X_{n}\right\rangle=\chi\left(\mathbf{x}_{\mathbf{2}}\right) \phi\left(\mathbf{x}_{\mathbf{2}}, \mathbf{R}\right) T^{a} H^{a}(\mathbf{R}) \phi\left(\mathbf{R}, \mathbf{x}_{1}\right) \psi^{\dagger}\left(\mathbf{x}_{\mathbf{1}}\right)|\mathrm{vac}\rangle
$$

Phi $=$ Wilson lines and $\mathrm{H}=$ gluonic and light quarks

The spectrum of static energies can be calculated in NRQCD
Lattice Spectrum of NRQCD hybrid static energies E^0_n

Symmetry of a system with a static
Q in x_1 and a Qbar in x_2

Irreducible representations of $D_{\infty h}$

- K : angular momentum of light d.o.f. $\lambda=\hat{\boldsymbol{r}} \cdot \boldsymbol{K}=0, \pm 1, \pm 2, \pm 3, \ldots$ $\Lambda=|\lambda|=0,1,2,3, \ldots(\Sigma, \Pi, \Delta, \Phi, \ldots)$
- Eigenvalue of $C P: \eta=+1(g),-1(u)$
- σ : eigenvalue of relfection about a plane containing $\hat{\boldsymbol{r}}$ (only for Σ states)

$$
\mathcal{H}^{(0)}=\int d^{3} \mathbf{x} \frac{1}{2}\left(\boldsymbol{\Pi}^{a} \boldsymbol{\Pi}^{a}+\mathbf{B}^{a} \mathbf{B}^{a}\right)-\sum^{n_{f}} \bar{q} i \mathbf{D} \cdot \gamma q
$$

NRQCD static

energies

$$
\begin{align*}
& \mathcal{H}^{(0)}\left|\underline{n} ; \mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle^{(0)}=E_{n}^{(0)}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)\left|\underline{n} ; \mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle \tag{0}\\
& \left|\underline{n} ; \mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle^{(0)}=\psi^{\dagger}\left(\mathbf{x}_{1}\right) \chi\left(\mathbf{x}_{2}\right)\left|n ; \mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle^{(0)} \tag{0}
\end{align*}
$$

Juge Kuti Mornigstar 98-06

[^0]Symmetry of a system with a static
Q in x_1 and a Qbar in x_2

Irreducible representations of D_{∞}

- K : angular momentum of light d.o.f. $\lambda=\hat{\boldsymbol{r}} \cdot \boldsymbol{K}=0, \pm 1, \pm 2, \pm 3$, $\Lambda=|\lambda|=0,1,2,3, \ldots(\Sigma, \Pi, \Delta, \Phi, \ldots)$
- Eigenvalue of $C P: \eta=+1(g),-1(u)$
- σ : eigenvalue of relfection about a plane containing $\hat{\boldsymbol{r}}$ (only for Σ states)

$$
\mathcal{H}^{(0)}=\int d^{3} \mathbf{x} \frac{1}{2}\left(\boldsymbol{\Pi}^{a} \boldsymbol{\Pi}^{a}+\mathbf{B}^{a} \mathbf{B}^{a}\right)-\sum^{n_{f}} \bar{q} i \mathbf{D} \cdot \gamma q
$$

NRQCD static

$$
\begin{align*}
& \mathcal{H}^{(0)}\left|\underline{n} ; \mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle^{(0)}=E_{n}^{(0)}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)\left|\underline{n} ; \mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle^{(0} \tag{0}\\
& \left|\underline{n} ; \mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle^{(0)}=\psi^{\dagger}\left(\mathbf{x}_{1}\right) \chi\left(\mathbf{x}_{2}\right)\left|n ; \mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle^{(0)}
\end{align*}
$$

energies

$$
E_{n}^{(0)}(r)=\lim _{T \rightarrow \infty} \frac{i}{T} \log \left\langle X_{n}, T / 2 \mid X_{n},-T / 2\right\rangle
$$

$$
\left.X_{n}\right\rangle=\chi\left(\mathbf{x}_{\mathbf{2}}\right) \phi\left(\mathbf{x}_{\mathbf{2}}, \mathbf{R}\right) T^{a} H^{a}(\mathbf{R}) \phi\left(\mathbf{R}, \mathbf{x}_{1}\right) \psi^{\dagger}\left(\mathbf{x}_{\mathbf{1}}\right)|\mathrm{vac}\rangle
$$

Phi =Wilson lines and $\mathrm{H}=$ gluonic and light quarks

Notice: in presence of light quark in the binding one adds ispospin quantum numbers and measure tetraquark static energies

QED - $\quad \Lambda_{\mathrm{QCD}} \gg m v^{2}$
Born Oppenheimer Braaten PRL 111 (2013) 162003
Braaten Langmack Smith PRD 90 (2014) 014044 DeSCription

Higher excitations develop a gap of order Lambda_QCD

Introducing a finite mass m:

- The spectrum of the $m v^{\wedge} 2$ fluctuations around the lowest static energy is the quarkonium spectrum
- The spectrum of the $m v^{\wedge} 2$ fluctuations around the higher excitations is the exotic spectrum (hybrids and tetraquarks)

QED
D-

Higher excitations
develop a gap of order Lambda_QCD
E

Introducing a finite mass m:

- The spectrum of the $m v^{\wedge} 2$ fluctuations around the lowest static energy is the quarkonium spectrum
- The spectrum of the $m v^{\wedge} 2$ fluctuations around the higher excitations is the exotic spectrum (hybrids and tetraquarks)

Nonperturbative matching to the pNREFT

$$
\begin{aligned}
&\left|\underline{0} ; \mathbf{x}_{1} \mathbf{x}_{2}\right\rangle->\left|(Q \bar{Q})_{1}\right\rangle \rightarrow \text { Quarkonium Singlet } \\
& E_{0}(r)-> V_{0}(r) \quad(\text { Strongy coupleo) PNRQCD } \\
&\left|\underline{n}>0 ; \mathbf{x}_{1} \mathbf{x}_{2}\right\rangle-\gg\left|(Q \bar{Q}) g^{(n)}\right\rangle \rightarrow \text { Higher Gluonic Excitations } \\
&|Q \bar{Q} q \bar{q}\rangle \quad \text { Tetraquarks } \\
& E_{n}^{(0)}(r)->V_{n}^{(0)}(r) \quad \text { BOEFT }
\end{aligned}
$$

$\Lambda_{\mathrm{QCD}} \gg m v^{2}$
Born Oppenheimer
Braaten PRL 111 (2013) 162003 Braaten Langmack Smith PRD 90 (2014) 014044 Description

Higher excitations
develop a gap of order Lambda_QCD

Introducing a finite mass m:

- The spectrum of the $m v^{\wedge} 2$ fluctuations around the lowest static energy is the quarkonium spectrum
- The spectrum of the $m v^{\wedge} 2$ fluctuations around the higher excitations is the exotic spectrum (hybrids and tetraquarks)

Nonperturbative matching to the pNREFT
systematically
$\langle H| \mathcal{H}|H\rangle=\langle n l j s| \frac{\mathbf{p}^{2}}{m}+\sum_{n} \frac{V_{s}^{(n)}}{m^{n}}|n l j s\rangle$
expand quantomechanically NRQCD states and energies in $1 / \mathrm{m}$ around the zero order and identify the QCD potentials

$$
\begin{aligned}
\left|\underline{0} ; \mathbf{x}_{1} \mathbf{x}_{2}\right\rangle-> & \left|(Q \bar{Q})_{1}\right\rangle \rightarrow \text { Quarkonium Singlet } \\
E_{0}(r)-> & V_{0}(r) \quad \text { (Stongy couplea) PNRQCD } \\
\left|\underline{n}>0 ; \mathbf{x}_{1} \mathbf{x}_{2}\right\rangle-\gg & \left|(Q \bar{Q}) g^{(n)}\right\rangle \rightarrow \text { Higher Gluonic Excitations } \\
& |Q \bar{Q} q \bar{q}\rangle \quad \text { Tetraquarks } \\
E_{n}^{(0)}(r)-> & V_{n}^{(0)}(r) \quad \text { BOEFT }
\end{aligned}
$$

pNRQCD and the potentials come from integrating $m v^{2}$ out all scales up to

- gluonic excitations develop a gap Λ_{QCD} and are integrated out
pNRQCD and the potentials come from integrating $m v^{2}$ out all scales up to
- gluonic excitations develop a gap Λ_{QCD} and are integrated out
\Rightarrow The singlet quarkonium field S of energy $m v^{2}$
Brambilla Pineda Soto Vairo 00 is the only the degree of freedom of pNRQCD (up to ultrasoft light quarks, e.g. pions).
$\mathcal{L}=\operatorname{Tr}\left\{S^{\dagger}\left(i \partial_{0}-\frac{\mathbf{p}^{2}}{m}-V_{s}\right) \mathrm{S}\right\} \quad+\Delta \mathcal{L}($ US light quarks $)$

Bali et al. 98

- A pure potential description emerges from the EFT however this is not the constituent quark model, alphas and masses are the QCD fundamental parameters
- The potentials $V=\operatorname{Re} V+\operatorname{Im} V$ from QCD in the matching: get spectra and decays
- We obtain the form of the nonperturbative potentials V in terms of generalized Wilson loops (stat that are low energy pure gluonic correlators: all the flavour dependence is pulled out

Applications regard: Spectrum, decays, production at LHC, studies of confinement

The singlet potential has the general structure
the fact that spin dependent corrections appear at order $1 / \mathrm{m}^{\wedge} 2$ is called Heavy Quark Spin Symmetry

$$
V=V_{0}+\frac{1}{m} V_{1}+\frac{1}{m^{2}}\left(V_{S D}+V_{V D}\right)
$$

$$
\left.V_{\mathrm{SD}}^{(2)}=-\frac{r^{k}}{r^{2}} c_{F} \epsilon^{k i j} i \int_{0}^{\infty} d t t\langle\underbrace{\mathrm{E}_{\mathbf{j}}^{\mathbf{E}(\mathrm{t})}}_{\mathbf{i}}\rangle \mathbf{L}_{1} \cdot \mathbf{S}_{2}+(1 \leftrightarrow 2) \right\rvert\, V_{L S}^{(2)}
$$

$$
\left.-\frac{r^{k}}{r^{2}}\left(c_{F} \epsilon^{k i j} i \int_{0}^{\infty} d t t\langle\stackrel{\bullet}{\mathbf{i} \mathbf{j}}]\right\rangle-\frac{2 c_{F}-1}{2} \nabla^{k} V^{(0)}\right) \mathbf{L}_{1} \cdot \mathbf{S}_{1}+(1 \leftrightarrow 2) \mid V_{L S}^{(1)}
$$

$$
\left.+\left(\frac{2}{3} c_{F}^{2} i \int_{0}^{\infty} d t\langle\square\rangle-4\left(d_{s v}+\frac{4}{3} d_{v v}\right) \delta^{(3)}(\mathbf{r})\right) \mathbf{S}_{1} \cdot \mathbf{S}_{\mathbf{2}} \right\rvert\, V_{S}
$$

The singlet potential has the general structure
the fact that spin dependent corrections appear at order $1 / \mathrm{m}^{\wedge} 2$ is called Heavy Quark Spin Symmetry

$$
V=V_{0}+\frac{1}{m} V_{1}+\frac{1}{m^{2}}\left(V_{S D}+V_{V D}\right)
$$

$$
\left.V_{\mathrm{SD}}^{(2)}=-\frac{r^{k}}{r^{2}} c_{F} \epsilon^{k i j} i \int_{0}^{\infty} d t t\langle\underbrace{\mathrm{E}_{\mathbf{i}}^{\mathbf{j}(\mathrm{t})}}_{\mathbf{B}}\rangle \mathbf{L}_{1} \cdot \mathbf{S}_{2}+(1 \leftrightarrow 2) \right\rvert\, V_{L S}^{(2)}
$$

$$
\left.-c_{F}^{2} \hat{r}_{i} \hat{r}_{j} i \int_{0}^{\infty} d t\left(\left\langle\square^{\mathbf{i}}{ }^{\mathrm{j}}\right\rangle-\frac{\delta_{i j}}{3}\langle\square\rangle\right)\left(\mathbf{S}_{1} \cdot \mathbf{S}_{\mathbf{2}}-3\left(\mathbf{S}_{1} \cdot \hat{\mathbf{r}}\right)\left(\mathbf{S}_{\mathbf{2}} \cdot \hat{\mathbf{r}}\right)\right) \right\rvert\, V_{T}
$$

$$
\left.+\left(\frac{2}{3} c_{F}^{2} i \int_{0}^{\infty} d t\langle\square\rangle-4\left(d_{s v}+\frac{4}{3} d_{v v}\right) \delta^{(3)}(\mathbf{r})\right) \mathbf{S}_{1} \cdot \mathbf{S}_{\mathbf{2}} \right\rvert\, V_{S}
$$

- the potentials contain the contribution of the scale m inherited from NRQCD matching coefficients—> they cancel any QM divergences, good UV behaviour
- the flavour dependent part is extracted in the NRQCD matching coefficients
- the nonperturbative part is universal:factorized and depends only on the glue $->$ only one lattice calculation to get the dynamics and the observables instead of an ab initio calculation of multiple Green functions

Lattice evaluation of the spin dependent potentials

Terrific advance in the data precision with Lüscher multivel algorithm!
Such data can distinguish different models for the dynamics of low energy QCD e.g. effective string model

BOEFT for HYBRIDS

In the short-range hybrids become gluelumps, i.e., quark-antiquark octets, O^{a}, in
 the presence of a gluonic field, $H^{a}: H(R, r, t)=H^{a}(R, t) O^{a}(R, r, t)$.
the hybrid , static energy can be written as a (multipole) expansion in r :
octet potential

$$
E_{g}=\cdot \frac{\alpha_{\mathrm{s}}}{6 r}+\Lambda_{g}+a_{g} r^{2}+\ldots \quad \text { non perturbative coefficient }
$$

Λ_{g} is the gluelump mass: $\quad \Lambda_{g}=\lim _{T \rightarrow \infty} \frac{i}{T} \ln \left\langle H^{a}(T / 2) \phi_{a b}^{\mathrm{adj}}(T / 2,-T / 2) H^{b}(-T / 2)\right\rangle$ calculated on the lattice
Foster Michael PRD 59 (1999) 094509
Bali Pineda PRD 69 (2004) 094001
Lewis Marsh PRD 89 (2014) 014502

In the limit $r \rightarrow 0$ more symmetry: $D_{\infty h} \rightarrow O(3) \times C$

- Several Λ_{η}^{σ} representations contained in one $J^{P C}$ representation:
- Static energies in these multiplets have same $r \rightarrow 0$ limit.

The gluelump multiplets $\Sigma_{u}^{-}, \Pi_{u} ; \Sigma_{g}^{+\prime}, \Pi_{g} ; \Sigma_{g}^{-}, \Pi_{g}^{\prime}, \Delta_{g} ; \Sigma_{u}^{+}, \Pi_{u}^{\prime}, \Delta_{u}$ are degenerate.

Gluonic excitation operators up to dim 3

Λ_{η}^{σ}	$K^{P C}$	H^{a}
Σ_{u}^{-}	1^{+-}	$\mathbf{r} \cdot \mathbf{B}, \mathbf{r} \cdot(\mathbf{D} \times \mathbf{E})$
Π_{u}	1^{+-}	$\mathbf{r} \times \mathbf{B}, \mathbf{r} \times(\mathbf{D} \times \mathbf{E})$
Σ_{+}^{++}	1^{--}	$\mathbf{r} \cdot \mathbf{E}, \mathbf{r} \cdot(\mathbf{D} \times \mathbf{B})$
Π_{g}	1^{--}	$\mathbf{r} \times \mathbf{E}, \mathbf{r} \times(\mathbf{D} \times \mathbf{B})$
Σ_{g}^{-}	2^{--}	$(\mathbf{r} \cdot \mathbf{D})(\mathbf{r} \cdot \mathbf{B})$
Π_{g}^{\prime}	2^{--}	$\mathbf{r} \times((\mathbf{r} \cdot \mathbf{D}) \mathbf{B}+\mathbf{D}(\mathbf{r} \cdot \mathbf{B}))$
Δ_{g}	2^{--}	$(\mathbf{r} \times \mathbf{D})^{i}(\mathbf{r} \times \mathbf{B})^{j}+(\mathbf{r} \times \mathbf{D})^{i}(\mathbf{r} \times \mathbf{B})^{i}$
Σ_{u}^{+}	2^{+-}	$(\mathbf{r} \cdot \mathbf{D})(\mathbf{r} \cdot \mathbf{E})$
Π_{u}^{\prime}	2^{+-}	$\mathbf{r} \times((\mathbf{r} \cdot \mathbf{D}) \mathbf{E}+\mathbf{D}(\mathbf{r} \cdot \mathbf{E}))$
Δ_{u}	2^{+-}	$(\mathbf{r} \times \mathbf{D})^{i}(\mathbf{r} \times \mathbf{E})^{i}+(\mathbf{r} \times \mathbf{D})^{i}(\mathbf{r} \times \mathbf{E})^{i}$

BOEFT for $E_{\Pi_{u}}$ and $E_{\Sigma_{u}^{-}}$hybrids

 Oncala Soto PRD 96 (2017) 014004Brambilla Krein Tarrus Vairo PRD 97 (2018) 016016 $P_{\kappa \lambda}^{i \dagger} O^{a}(\mathbf{r}, \mathbf{R}, t) H_{\kappa}^{i a}(\mathbf{R}, t)=Z_{\kappa} \Psi_{\kappa \lambda}(\mathbf{r}, \mathbf{R}, t)$

$$
\mathcal{L}_{\text {BOEFT for } 1^{+-}}=\int d^{3} r \sum_{\lambda \lambda^{\prime}} \operatorname{Tr}\left\{\Psi_{1^{+--}}^{\dagger}\left(i \partial_{0}-V_{1+-\lambda \lambda^{\prime}}(r)+\hat{r}_{\lambda}^{i \dagger} \frac{\boldsymbol{\nabla}_{r}^{2}}{m} \hat{r}_{\lambda^{\prime}}^{i}\right) \Psi_{1+-\lambda^{\prime}}\right\}
$$

- $\lambda= \pm 1,0 ; \quad \hat{r}_{0}^{i}=\hat{r}^{i}$ and $\hat{r}_{ \pm 1}^{i}=\mp\left(\hat{\theta}^{i} \pm i \hat{\phi}^{i}\right) / \sqrt{2}$.
- $V_{1+-\lambda \lambda^{\prime}}=V_{1+-\lambda \lambda^{\prime}}^{(0)}+\frac{V_{1+-\lambda \lambda^{\prime}}^{(1)}}{m}+\frac{V_{1+-\lambda \lambda^{\prime}}^{(2)}}{m^{2}}+\cdots$

BOEFT for $E_{\Pi_{u}}$ and $E_{\Sigma_{u}^{-}}$hybrids

$$
\mathcal{L}_{\text {BOEFT for } 1^{+-}}=\int d^{3} r \sum_{\lambda \lambda^{\prime}} \operatorname{Tr}\left\{\Psi_{1+-\lambda}^{\dagger}\left(i \partial_{0}-V_{1+-\lambda \lambda^{\prime}}(r)+\hat{r}_{\lambda}^{i \dagger} \frac{\boldsymbol{\nabla}_{r}^{2}}{m} \hat{r}_{\lambda^{\prime}}^{i}\right) \Psi_{1+-\lambda^{\prime}}\right\}
$$

- $\lambda= \pm 1,0 ; \quad \hat{r}_{0}^{i}=\hat{r}^{i}$ and $\hat{r}_{ \pm 1}^{i}=\mp\left(\hat{\theta}^{i} \pm i \hat{\phi}^{i}\right) / \sqrt{2}$.
- $V_{1+-\lambda \lambda^{\prime}}=V_{1+-\lambda \lambda^{\prime}}^{(0)}+\frac{V_{1+-\lambda \lambda^{\prime}}^{(1)}}{m}+\frac{V_{1+-\lambda \lambda^{\prime}}^{(2)}}{m^{2}}+\cdots$
- For the static potential: $V_{1+-\lambda \lambda^{\prime}}^{(0)}=\delta_{\lambda \lambda^{\prime}} V_{1+-\lambda}^{(0)}$, with $V_{1+{ }^{+}}^{(0)}=E_{\Sigma_{u}^{-}}, V_{1+ - \pm 1}^{(0)}=E_{\Pi_{u}} \quad$ static energies

The LO e.o.m. for the fields $\Psi_{1+-\lambda}^{\dagger}$ are a set of coupled Schrödinger equations:

$$
i \partial_{0} \Psi_{1+-\lambda}=\left[\left(-\frac{\boldsymbol{\nabla}_{r}^{2}}{m}+V_{1+-\lambda}^{(0)}\right) \delta_{\lambda \lambda^{\prime}}-\sum_{\lambda^{\prime}} C_{1+-\lambda \lambda^{\prime}}^{\mathrm{nad}}\right] \Psi_{\kappa \lambda^{\prime}}
$$

The eigenvalues \mathcal{E}_{N} give the masses M_{N} of the states as $M_{N}=2 m+\mathcal{E}_{N}$.
$\hat{r}_{\lambda}^{i \dagger}\left(\frac{\boldsymbol{\nabla}_{r}^{2}}{m}\right) \hat{r}_{\lambda^{\prime}}^{i}=\delta_{\lambda \lambda^{\prime}} \frac{\boldsymbol{\nabla}_{r}^{2}}{m}+C_{1+-\lambda \lambda^{\prime}}^{\mathrm{nad}}$
with $C_{1+-\lambda \lambda^{\prime}}^{\mathrm{nad}}=\hat{r}_{\lambda}^{i \dagger}\left[\frac{\nabla_{r}^{2}}{m}, \hat{r}_{\lambda^{\prime}}^{i}\right]$ called the nonadiabatic coupling.

BOEFT for $E_{\Pi_{u}}$ and $E_{\Sigma_{u}^{-}}$hybrids

- Berwein Brambilla Tarrus Vairo PRD 92 (2015) 114019 Oncala Soto PRD 96 (2017) 014004

$$
\mathcal{L}_{\text {BOEFT for } 1+-}=\int d^{3} r \sum_{\lambda \lambda^{\prime}} \operatorname{Tr}\left\{\Psi_{1+-\lambda}^{\dagger}\left(i \partial_{0}-V_{1+-\lambda \lambda^{\prime}}(r)+\hat{r}_{\lambda}^{i \dagger} \frac{\boldsymbol{\nabla}_{r}^{2}}{m} \hat{r}_{\lambda^{\prime}}^{i}\right) \Psi_{1^{+-\lambda^{\prime}}}\right\}
$$

- $\lambda= \pm 1,0 ; \quad \hat{r}_{0}^{i}=\hat{r}^{i}$ and $\hat{r}_{ \pm 1}^{i}=\mp\left(\hat{\theta}^{i} \pm i \hat{\phi}^{i}\right) / \sqrt{2}$.
- $V_{1+-\lambda \lambda^{\prime}}=V_{1+-\lambda \lambda^{\prime}}^{(0)}+\frac{V_{1+-\lambda \lambda^{\prime}}^{(1)}}{m}+\frac{V_{1+-\lambda \lambda^{\prime}}^{(2)}}{m^{2}}+\cdots$
fitted from the lattice hybrids
For the static potential: $V_{1^{+}-\lambda \lambda^{\prime}}^{(0)}=\delta_{\lambda \lambda^{\prime}} V_{1+-\lambda}^{(0)}$, with $V_{1+-0}^{(0)}=E_{\Sigma_{u}^{-}}, V_{1^{+}- \pm 1}^{(0)}=E_{\Pi_{u}}$.

$$
\left[-\frac{1}{m r^{2}} \partial_{r} r^{2} \partial_{r}+\frac{1}{m r^{2}}\left(\begin{array}{cc}
l(l+1)+2 & 2 \sqrt{l(l+1)} \\
2 \sqrt{l(l+1)} & l(l+1)
\end{array}\right)+\left(\begin{array}{cc}
E_{\Sigma}^{(0)} & 0 \\
0 & E_{\Pi}^{(0)}
\end{array}\right)\right]\binom{\psi_{\Sigma}^{(N)}}{\psi_{-\Pi}^{(N)}}=\mathcal{E}_{N}\binom{\psi_{\Sigma}^{(N)}}{\psi_{-\Pi}^{(N)}}
$$

$$
\left[-\frac{1}{m r^{2}} \partial_{r} r^{2} \partial_{r}+\frac{l(l+1)}{m r^{2}}+E_{\Pi}^{(0)}\right] \psi_{+\Pi}^{(N)}=\mathcal{E}_{N} \psi_{+\Pi}^{(N)}
$$

Mixing remove the degeneration among opposite parity states: ->Lambda doubling

- $l(l+1)$ is the eigenvalue of angular momentum $\boldsymbol{L}^{2}=\left(\boldsymbol{L}_{Q \bar{Q}}+\boldsymbol{L}_{g}\right)^{2} \quad$ existing also in molecular physics
- the two solutions correspond to opposite parity states: $(-1)^{l}$ and $(-1)^{l+1}$
- corresponding eigenvalues under charge conjugation: $(-1)^{l+s}$ and $(-1)^{l+s+1}$

Hybrid multiplets as predicted by BOEFT (coloured rectangles) compared to the neutral isoscalar states observed in charmonium/bottomonium sector (crosses)

Note:
Band in the mass value for each multiplet is due to the error $(150 \mathrm{Mev})$ on the gluelump mass measured on the lattice
N. B. W. K. Lai, A- Mohapatra, A. Vairo 2212.09187

	l	$J^{P C}\{s=0, s=1\}$	$E_{n}^{(0)}$
H_{1}	1	$\left\{1^{--},(0,1,2)^{-+}\right\}$	Σ_{u}^{-}, Π_{u}
H_{2}	1	$\left\{1^{++},(0,1,2)^{+-}\right\}$	Π_{u}
H_{3}	0	$\left\{0^{++}, 1^{+-}\right\}$	Σ_{u}^{-}
H_{4}	2	$\left\{2^{++},(1,2,3)^{+-}\right\}$	Σ_{u}^{-}, Π_{u}
H_{5}	2	$\left\{2^{--},(1,2,3)^{-+}\right\}$	Π_{u}

The BOEFT gives a prescription to calculate the hybrids spin dependent potentials at order $1 / \mathrm{m}$ and $1 / \mathrm{m}^{\wedge} 2$

1/m

$$
\begin{aligned}
V_{1+-\lambda \lambda^{\prime} \mathrm{SD}}^{(1)}(\boldsymbol{r}) & =V_{S K}(r)\left(\hat{r}_{\lambda}^{i \dagger} \boldsymbol{K}^{i j} \hat{r}_{\lambda^{\prime}}^{j}\right) \cdot \boldsymbol{S} \\
& +V_{S K b}(r)\left[\left(\boldsymbol{r} \cdot \hat{\boldsymbol{r}}_{\lambda}^{\dagger}\right)\left(r^{i} \boldsymbol{K}^{i j} \hat{r}_{\lambda^{\prime}}^{j}\right) \cdot \boldsymbol{S}+\left(r^{i} \boldsymbol{K}^{i j} \hat{r}_{\lambda}^{j \dagger}\right) \cdot \boldsymbol{S}\left(\boldsymbol{r} \cdot \hat{\boldsymbol{r}}_{\lambda^{\prime}}\right)\right] \quad \\
S_{12}=12\left(\mathbf{S}_{1} \cdot \hat{\mathbf{r}}\right)\left(\mathbf{S}_{2} \cdot \hat{\mathbf{r}}\right)-4\left(\mathbf{S}_{1} \cdot \mathbf{S}_{2}\right) & \mathbf{S}=\mathbf{S}_{1}+\mathbf{S}_{2}
\end{aligned}
$$

$$
V_{1+-\lambda \lambda^{\prime} \mathrm{SD}}^{(2)}(\boldsymbol{r})=V_{L S a}^{(2)}(r)\left(\hat{r}_{\lambda}^{i \dagger} \boldsymbol{L} \hat{r}_{\lambda^{\prime}}^{i}\right) \cdot \boldsymbol{S}+V_{L S b}^{(2)}(r) \hat{r}_{\lambda}^{i \dagger}\left(L^{i} S^{j}+S^{i} L^{j}\right) \hat{r}_{\lambda^{\prime}}^{j}
$$

$$
+V_{S^{2}}^{(2)}(r) S^{2} \delta_{\lambda \lambda^{\prime}}+V_{S_{12} a}^{(2)}(r) S_{12} \delta_{\lambda \lambda^{\prime}}+V_{S_{12} b}^{(2)}(r) \hat{r}_{\lambda}^{i \dagger} \hat{r}_{\lambda^{\prime}}^{j}\left(S_{1}^{i} S_{2}^{j}+S_{2}^{i} S_{1}^{j}\right)
$$

$\left(K^{i j}\right)^{k}=i \epsilon^{i k j}$ is the angular momentum of the spin one gluons $\quad \bar{L}$ is the orbital angular momentum of the heavy-quark-antiquark pair.

The BOEFT gives a prescription to calculate the hybrids spin dependent potentials at order $1 / \mathrm{m}$ and $1 / \mathrm{m}^{\wedge} 2$

1/m

$$
V_{1+-\lambda \lambda^{\prime} \mathrm{SD}}^{(1)}(\boldsymbol{r})=V_{S K}(r)\left(\hat{r}_{\lambda}^{i \dagger} \boldsymbol{K}^{i j} \hat{r}_{\lambda^{\prime}}^{j}\right) \cdot \boldsymbol{S}
$$

$$
+V_{S K b}(r)\left[\left(\boldsymbol{r} \cdot \hat{\boldsymbol{r}}_{\lambda}^{\dagger}\right)\left(r^{i} \boldsymbol{K}^{i j} \hat{r}_{\lambda^{\prime}}^{j}\right) \cdot \boldsymbol{S}+\left(r^{i} \boldsymbol{K}^{i j} \hat{r}_{\lambda}^{j \dagger}\right) \cdot \boldsymbol{S}\left(\boldsymbol{r} \cdot \hat{\boldsymbol{r}}_{\lambda^{\prime}}\right)\right]
$$

$$
\mathbf{S}=\mathbf{S}_{1}+\mathbf{S}_{2}
$$

$$
\begin{equation*}
S_{12}=12\left(\mathbf{S}_{1} \cdot \hat{\mathbf{r}}\right) \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
& V_{1+-\lambda \lambda^{\prime} \mathrm{SD}}^{(2)}(\boldsymbol{r})=V_{L S a}^{(2)}(r)\left(\hat{r}_{\lambda}^{i \dagger} \boldsymbol{L} \hat{r}_{\lambda^{\prime}}^{i}\right) \cdot \boldsymbol{S}+V_{L S b}^{(2)}(r) \hat{r}_{\lambda}^{i \dagger}\left(L^{i} S^{j}+S^{i} L^{j}\right) \hat{r}_{\lambda^{\prime}}^{j} \\
& \quad+V_{S^{2}}^{(2)}(r) \boldsymbol{S}^{2} \delta_{\lambda \lambda^{\prime}}+V_{S_{12} a}^{(2)}(r) S_{12} \delta_{\lambda \lambda^{\prime}}+V_{S_{12} b}^{(2)}(r) \hat{r}_{\lambda}^{i \dagger} \hat{r}_{\lambda^{\prime}}^{j}\left(S_{1}^{i} S_{2}^{j}+S_{2}^{i} S_{1}^{j}\right)
\end{aligned}
$$

Features:

- New spin structures with respect to the quarkonium case: all terms at order $1 / m$ and two terms at order $1 / \mathrm{m}^{\wedge} 2$

Differently from the quarkonium case, the hybrid potential gets a first contribution already at order $\Lambda_{\mathrm{QCD}}^{2} / m_{h}$. The corresponding operator does not contribute at LO to matrix elements of quarkonium states as its projection on quark-antiquark color singlet states vanishes. Hence, spin splittings are remarkably less suppressed in heavy quarkonium hybrids than in heavy quarkonia.

Hybrid spin dependent potentials at order $1 / \mathrm{m}$ and $1 / \mathrm{m}^{\wedge} 2$
1/m

$$
\begin{aligned}
V_{1+-\lambda \lambda^{\prime} \mathrm{SD}}^{(1)}(\boldsymbol{r}) & =V_{S K}(r)\left(\hat{r}_{\lambda}^{i \dagger} \boldsymbol{K}^{i j} \hat{r}_{\lambda^{\prime}}^{j}\right) \cdot \boldsymbol{S} \\
& +V_{S K b}(r)\left[\left(\boldsymbol{r} \cdot \hat{\boldsymbol{r}}_{\lambda}^{\dagger}\right)\left(r^{i} \boldsymbol{K}^{i j} \hat{r}_{\lambda^{\prime}}^{j}\right) \cdot \boldsymbol{S}+\left(r^{i} \boldsymbol{K}^{i j} \hat{r}_{\lambda}^{j \dagger}\right) \cdot \boldsymbol{S}\left(\boldsymbol{r} \cdot \hat{\boldsymbol{r}}_{\lambda^{\prime}}\right)\right] \quad S_{12}=12\left(\mathbf{S}_{1} \cdot \hat{\mathbf{r}}\right)\left(\mathbf{S}_{2} \cdot \hat{\mathbf{r}}\right)-4\left(\mathbf{S}_{1} \cdot \mathbf{S}_{2}\right)
\end{aligned}
$$

$$
V_{1+-\lambda \lambda^{\prime} \mathrm{SD}}^{(2)}(\boldsymbol{r})=V_{L S a}^{(2)}(r)\left(\hat{r}_{\lambda}^{i \dagger} \boldsymbol{L} \hat{r}_{\lambda^{\prime}}^{i}\right) \cdot \boldsymbol{S}+V_{L S b}^{(2)}(r) \hat{r}_{\lambda}^{i \dagger}\left(L^{i} S^{j}+S^{i} L^{j}\right) \hat{r}_{\lambda^{\prime}}^{j}
$$

$1 / m^{\wedge} 2$

$$
+V_{S^{2}}^{(2)}(r) \boldsymbol{S}^{2} \delta_{\lambda \lambda^{\prime}}+V_{S_{12} a}^{(2)}(r) S_{12} \delta_{\lambda \lambda^{\prime}}+V_{S_{12} b}^{(2)}(r) \hat{r}_{\lambda}^{i \dagger} \hat{r}_{\lambda^{\prime}}^{j}\left(S_{1}^{i} S_{2}^{j}+S_{2}^{i} S_{1}^{j}\right)
$$

$\left(K^{i j}\right)^{k}=i \epsilon^{i k j}$ is the angular momentum of the spin one gluons $\quad L$ is the orbital angular momentum of the heavy-quark-antiquark pair.
Features:
The nonperturbative part in V_i (r) depend on nonperturbative gluonic correlators non local in time not yet calculated on the lattice: six unknowns, the octet perturbative part can be calculated in perturbation theory

- The only flavor dependence is carried by the perturbative NRQCD matching coefficients

Hybrid spin dependent potentials at order $1 / \mathrm{m}$ and $1 / \mathrm{m}^{\wedge} 2$

1/m

$$
\begin{aligned}
V_{1+-\lambda \lambda^{\prime} \mathrm{SD}}^{(1)}(\boldsymbol{r}) & =V_{S K}(r)\left(\hat{r}_{\lambda}^{i \dagger} \boldsymbol{K}^{i j} \hat{r}_{\lambda^{\prime}}^{j}\right) \cdot \boldsymbol{S} \\
& +V_{S K b}(r)\left[\left(\boldsymbol{r} \cdot \hat{\boldsymbol{r}}_{\lambda}^{\dagger}\right)\left(r^{i} \boldsymbol{K}^{i j} \hat{r}_{\lambda^{\prime}}^{j}\right) \cdot \boldsymbol{S}+\left(r^{i} \boldsymbol{K}^{i j} \hat{r}_{\lambda}^{j \dagger}\right) \cdot \boldsymbol{S}\left(\boldsymbol{r} \cdot \hat{\boldsymbol{r}}_{\lambda^{\prime}}\right)\right] \quad S_{12}=12\left(\mathbf{S}_{1} \cdot \hat{\mathbf{r}}\right)\left(\mathbf{S}_{2} \cdot \hat{\mathbf{r}}\right)-4\left(\mathbf{S}_{1} \cdot \mathbf{S}_{2}\right)
\end{aligned}
$$

$1 / m^{\wedge} 2$

$$
V_{1+-\lambda \lambda^{\prime} \mathrm{SD}}^{(2)}(\boldsymbol{r})=V_{L S a}^{(2)}(r)\left(\hat{r}_{\lambda}^{i \dagger} \boldsymbol{L} \hat{r}_{\lambda^{\prime}}^{i}\right) \cdot \boldsymbol{S}+V_{L S b}^{(2)}(r) \hat{r}_{\lambda}^{i \dagger}\left(L^{i} S^{j}+S^{i} L^{j}\right) \hat{r}_{\lambda^{\prime}}^{j}
$$

$$
+V_{S^{2}}^{(2)}(r) \boldsymbol{S}^{2} \delta_{\lambda \lambda^{\prime}}+V_{S_{12} a}^{(2)}(r) S_{12} \delta_{\lambda \lambda^{\prime}}+V_{S_{12} b}^{(2)}(r) \hat{r}_{\lambda}^{i \dagger} \hat{r}_{\lambda^{\prime}}^{j}\left(S_{1}^{i} S_{2}^{j}+S_{2}^{i} S_{1}^{j}\right)
$$

$\left(K^{i j}\right)^{k}=i \epsilon^{i k j}$ is the angular momentum of the spin one gluons $\quad \boldsymbol{L}$ is the orbital angular momentum of the heavy-quark-antiquark pair.
Features:
The nonperturbative part in V_i (r) depend on nonperturbative gluonic correlators non local in time not yet calculated on the lattice: six unknowns, the octet perturbative part can be calculated in perturbation theory

- The only flavor dependence is carried by the perturbative NRQCD matching coefficients

USE LATTICE CALCULATION OF THE CHARMONIUM
 SPIN MULTIPLETS TO EXTRACT the 6 UNKNOWNs and PREDICT THE BOTTOMONIUM SPIN MULTIPLETS, learn also about the DYNAMICS

Charmonium Hybrids Multiplets H_1

lattice data from (violet) from G. K. C. Cheung, C. O'Hara, G. Moir, M. Peardon, S. M. Ryan, C. E. Thomas, and D. Tims (Hadron Spectrum), JHEP 12, 089 (2016), arXiv:1610.01073 [hep-lat].
with a pion of about 240 MeV

Charmonium Hybrids Multiplets H_1

lattice data from (violet) from
G. K. C. Cheung, C. O'Hara, G. Moir, M. Peardon, S. M. Ryan, C. E. Thomas, and D. Tims (Hadron Spectrum), JHEP 12, 089 (2016), arXiv:1610.01073 [hep-lat].
with a pion of about 240 MeV
height of the boxes is an estimate of the uncertainty:
estimated by the parametric size of higher order corrections, m alpha_s ${ }^{\wedge} 5$ for the perturbative part, powers of Lambda_qcd/m for the nonperturbative part, plus the statistical error on the fit
lattice data from (violet) from
G. K. C. Cheung, C. O'Hara, G. Moir, M. Peardon, S. M. Ryan, C. E. Thomas, and D. Tims (Hadron Spectrum), JHEP 12, 089 (2016), arXiv:1610.01073 [hep-lat].
with a pion of about 240 MeV
height of the boxes is an estimate of the uncertainty:
estimated by the parametric size of higher order corrections, m alpha_s ${ }^{\wedge} 5$ for the perturbative part, powers of Lambda_qcd/m for the nonperturbative part, plus the statistical error on the fit
the perturbative part produces a pattern opposite
to the lattice and to ordinary quarkonia —>
discrepancy can be reconciled thanks to the nonperturbative parts, especially the one at order 1/
m which goes like Lambda^ $2 / \mathrm{m}$ and is parametrically larger than the perturbative contribution at order $m v^{\wedge} 4$
which is interesting as
some models are taking the spin interaction from perturbation theory with a constituent gluon

Charmonium Hybrids Multiplets H_1

Charmonium Hybrids Multiplets H_1 and H_2

H_1 and H_2 corresponds to $\mathrm{I}=1$ and are negative and positive parity resp. The mass splitting between $\mathrm{H}_{-} 1$ and $\mathrm{H}_{2} 2$ is a result of lambda-doubling
H_3 and H_4 are also calculated

Bottomonium hybrid spin splittings

thanks to the BOEFT factorizatio we can fix the nonperturbative unknowns from a charmonium hybrid calculationthe nonperturbative low energy unknownsdo not depend on the flavor: we can predict the bottomonium
hybrids splin splittings

and also the other H multiplets

Bottomonium hybrid spin splittings
thanks to the BOEFT factorizatio we can fix the nonperturbative unknowns from a charmonium hybrid calculationthe nonperturbative low energy unknownsdo not depend on the flavor: we can predict the bottomonium hybrids splin splittings

$$
\text { and also the other } \mathrm{H} \text { multiplets }
$$

Comparison of our prediction to the existing lattice data on H 1

Bottomonium H_{1} hybrid spin splittings

blue BOEFT predictions (more precise), violet actual lattice calculation

\author{

- Ryan et al arXiv:2008.02656 [2+1 flavors, $\left.m_{\pi}=400 \mathrm{MeV}\right]$ unpublished plot by J. Segovia and J. Tarrus
}
->difficult to insert in models
->this spin structure has huge impact in phenomenology: larger spin multiplets separation than in quarkonium ->less spin symmetry in decays due to quarkonium-hybrids mixing via a spin operator at $1 / \mathrm{m}$
->difficult to insert in models
->this spin structure has huge impact in phenomenology : larger spin multiplets separation than in quarkonium ->less spin symmetry in decays due to quarkonium-hybrids mixing via a spin operator at $1 / \mathrm{m}$

Oncala \& Soto, Phys. Rev. D. 96, (2017)

- Hybrid states in the same energy range and same quantum \#'s as quarkonium can mix.

$$
\text { Ex. } \quad H_{1}\left[1^{--}\right](4155) \leftrightarrow c \bar{c}\left[1^{--}\right](3 S)
$$

Effect on decay: $H_{m} \leftrightarrow Q_{m}^{\prime} \rightarrow\left(\eta_{c}, J / \psi, \cdots\right)+(\gamma, \cdots)$

- Mixing potential $V_{\kappa \lambda}^{m i x}$: determined from matching NRQCD and BOEFT at $O(1 / \mathrm{m})$

$$
V_{|\lambda|}^{\text {mix }}=-\frac{g c_{F}}{2 m_{Q}}{ }_{\lambda}^{(0)}\langle 1| B^{j}(\mathbf{r} / 2,0)|0\rangle^{(0)} P_{\lambda}^{j},
$$

Above expression can be computed on lattice if we identify: $\quad|0\rangle^{(0)}=\left|\Sigma_{g}^{+}\right\rangle$

$$
|1\rangle_{\lambda=0}^{(0)}=\left|\Sigma_{u}^{-}\right\rangle,|1\rangle_{|\lambda|=1}^{(0)}=\left|\Pi_{u}\right\rangle
$$

$\Gamma_{H \rightarrow S}=-2\langle H| \operatorname{Im} \Delta V|H\rangle . \quad$ we calculated spin conserving and spin flipping decays

Decay to open threshold states not accounted

$\Gamma_{H \rightarrow S}=-2\langle H| \operatorname{Im} \Delta V|H\rangle$.

we calculated spin conserving and spin flipping decays

 they are same sizeDecay to open threshold states not accounted

- Comparison: bottom exotic states with corresponding bottomonium hybrid state:

Comparison: charm exotic states with corresponding charmonium hybrid state:

Hybrid: Summary

Hybrids $(Q \bar{Q} g)$: Color singlet state of color octet $Q \bar{Q}+$ gluon. $(Q=c, b)$
\checkmark Isoscalar neutral mesons (Isospin=0)
\checkmark Candidates for hybrids based on mass, quantum numbers, and decays to quarkonium:

Charm sector:

$>\boldsymbol{X}(\mathbf{4 1 6 0})$: could be charm hybrid $\boldsymbol{H}_{\mathbf{1}}\left[2^{-+}\right](4155)$.
$>X(4630):$ could be charm hybrid $\boldsymbol{H}_{\mathbf{1}}\left[\left(1 / \mathbf{2}^{-+}\right)\right](4507)$.
$>\boldsymbol{\psi}(\mathbf{4 3 9 0})$: could be charm hybrid $\boldsymbol{H}_{\mathbf{1}}\left[\mathbf{1}^{--}\right](4507)$.
$>\boldsymbol{\psi}(\mathbf{4 7 1 0})$: could be charm hybrid $\boldsymbol{H}_{\mathbf{1}}\left[\left(\mathbf{1}^{--}\right)\right](\mathbf{4 8 1 2})$.
$>\mathbf{X}(\mathbf{4 6 3 0})$: could be charm hybrid $\boldsymbol{H}_{\mathbf{1}}\left[\left(1 / \mathbf{2}^{-+}\right)\right](4507)$.
$>\chi_{\boldsymbol{c} 1}(\mathbf{4 6 8 5}):$ could be charm hybrid $H_{2}\left[\left(\mathbf{1}^{++}\right)\right](4667)$.

Bottom sector:

$>\mathbf{Y}(\mathbf{1 0 7 5 3}):$ could be bottom hybrid $\boldsymbol{H}_{\mathbf{1}}\left[\left(\mathbf{1}^{--}\right)\right](\mathbf{1 0 7 8 6})$.

Conventional Wisdom: Hybrid decays to two S-wave mesons forbidden! $H_{m} \nrightarrow D^{(*)} \bar{D}^{(*)}$
Kou \& Pene, Phys Lett B 631 (2005) Page, Phys Lett B 407 (1997) Farina, Tecocoatzi, Giachino, Santopinto \& Swanson, Phys Rev D 102 (2020)
Born Oppenheimer quantum numbers for hybrids and ground state meson pair does allow for decay to two s-wave mesons. Bruschini 2306.17120

	l	$J^{P C}\{s=0, s=1\}$	$E_{n}^{(0)}$
H_{1}	1	$\left\{1^{--},(0,1,2)^{-+}\right\}$	Σ_{u}^{-}, Π_{u}
H_{2}	1	$\left\{1^{++},(0,1,2)^{+-}\right\}$	Π_{u}
H_{3}	0	$\left\{0^{++}, 1^{+-}\right\}$	Σ_{u}^{-}
H_{4}	2	$\left\{2^{++},(1,2,3)^{+-}\right\}$	Σ_{u}^{-}, Π_{u}
H_{5}	2	$\left\{2^{--},(1,2,3)^{-+}\right\}$	Π_{u}

Most quarkonium hybrids can decay into pair of s-wave mesons !
forbidden for decay into pair of s-wave mesons
Recent lattice computation for $\boldsymbol{c} \overline{\boldsymbol{c}}$ hybrid 1^{-+}decay to

BOEFT for tetraquarks and pentaquarks

BOEFT may be used to describe any system made by two heavy quarks bound adiabatically with some light quarks degrees of freedom (tetraquarks QQlight quarks, QQbar light quarks, pentaquarks) In case of light quarks isospin quantum numbers should be added

Steps go as before:
-identify the symmetries, identify the interpolating operators O_n n
$\mathcal{O}_{n}(t, \boldsymbol{r}, \boldsymbol{R})=\chi(t, \boldsymbol{R}-\boldsymbol{r} / 2) \phi(t, \boldsymbol{R}-\boldsymbol{r} / 2, \boldsymbol{R}) H_{n}(t, \boldsymbol{R}) \phi(t, \boldsymbol{R}, \boldsymbol{R}+\boldsymbol{r} / 2) \psi^{\dagger}(t, \boldsymbol{R}+\boldsymbol{r} / 2)$
—define the static energies
$E_{n}^{(0)}(r)=\lim _{T \rightarrow \infty} \frac{i}{T} \log \left\langle\mathcal{O}_{n}(T, \boldsymbol{r}, \boldsymbol{R}) \mid \mathcal{O}_{n}(0, \boldsymbol{r}, \boldsymbol{R})\right\rangle$
-obtain the coupled Schroedinger equations in BOEFT

BOEFT may be used to describe any system made by two heavy quarks bound adiabatically with some light quarks degrees of freedom (tetraquarks QQlight quarks, QQbar light quarks, pentaquarks) In case of light quarks isospin quantum numbers should be added

Steps go as before:
-identify the symmetries, identify the interpolating operators O_n
$\mathcal{O}_{n}(t, \boldsymbol{r}, \boldsymbol{R})=\chi(t, \boldsymbol{R}-\boldsymbol{r} / 2) \phi(t, \boldsymbol{R}-\boldsymbol{r} / 2, \boldsymbol{R}) H_{n}(t, \boldsymbol{R}) \phi(t, \boldsymbol{R}, \boldsymbol{R}+\boldsymbol{r} / 2) \psi^{\dagger}(t, \boldsymbol{R}+\boldsymbol{r} / 2)$
-define the static energies
$E_{n}^{(0)}(r)=\lim _{T \rightarrow \infty} \frac{i}{T} \log \left\langle\mathcal{O}_{n}(T, \boldsymbol{r}, \boldsymbol{R}) \mid \mathcal{O}_{n}(0, \boldsymbol{r}, \boldsymbol{R})\right\rangle$
-obtain the coupled Schroedinger equations in BOEFT

Notice:

-the perturbative part of the potentials can be calculated
-the structure of the spin corrections will be similar to the hybrids case (with a $1 / \mathrm{m}$ spin correction) calculation of decays will use the same technology

$$
\mathcal{O}_{\kappa, \lambda}^{Q \bar{Q}}(t, \boldsymbol{r}, \boldsymbol{R})=\chi^{\dagger}\left(t, \boldsymbol{x}_{2}\right) \phi\left(t, \boldsymbol{x}_{2}, \boldsymbol{R}\right) H_{\kappa, \lambda}^{Q \bar{Q}}(t, \boldsymbol{R}) \phi\left(t, \boldsymbol{R}, \boldsymbol{x}_{1}\right) \psi\left(t, \boldsymbol{x}_{1}\right)
$$

I=0

$$
\begin{aligned}
H_{0^{-+}, 0}(t, \boldsymbol{x}) & =\left[\bar{q}(t, \boldsymbol{x}) \gamma^{5} T^{a} q(t, \boldsymbol{x})\right] T^{a}, \\
H_{1^{--}, 0}(t, \boldsymbol{x}) & =\left[\bar{q}(t, \boldsymbol{x})(\hat{\boldsymbol{r}} \cdot \boldsymbol{\gamma}) T^{a} q(t, \boldsymbol{x})\right] T^{a}, \\
H_{1^{--,, \pm 1}}(t, \boldsymbol{x}) & =\left[\bar{q}(t, \boldsymbol{x})(\hat{\boldsymbol{r}} \times \boldsymbol{\gamma}) T^{a} q(t, \boldsymbol{x})\right] T^{a}
\end{aligned}
$$

$$
E_{\kappa, \Lambda}(r)=V_{o}(r)+\Lambda_{H_{\kappa}}+\mathcal{O}\left(r^{2}\right)
$$

$Q \bar{Q}$ color state	Light spin $\boldsymbol{K}^{P C}$	Static energies	l	$\left\{S_{Q}=0, S_{Q}=1\right\}$	Multiplets
Octet	0^{-+}	$\left\{\Sigma_{u}^{-}\right\}$	0	$\left\{0^{++}, 1^{+-}\right\}$	T_{1}^{0}
			1	$\left\{1^{--},(0,1,2)^{-+}\right\}$	T_{2}^{0}
			2	$\left\{2^{++},(1,2,3)^{+-}\right\}$	T_{3}^{0}
	1^{--}	$\left\{\Sigma_{g}^{+\prime}, \Pi_{g}\right\}$	1	$\left\{1^{+-},(0,1,2)^{++}\right\}$	T_{1}^{1}
		$\left\{\Sigma_{g}^{+\prime}\right\}$	0	$\left\{0^{-+}, 1^{--}\right\}$	T_{2}^{1}
		$\left\{\Pi_{g}\right\}$	1	$\left\{1^{-+},(0,1,2)^{--}\right\}$	T_{3}^{1}
		$\left\{\Sigma_{g}^{+\prime}, \Pi_{g}\right\}$	2	$\left\{2^{-+},(1,2,3)^{--}\right\}$	T_{4}^{1}

Adjoint meson

Coupled schroedinger eqs set up in BOEFT, need lattice input on the static tetra energies

I=1 S. Prevlosek, H. Bahtiyar, J. Petrovich eprint: 1912.02656
|=0 Bicudo Cichy Peters Wagner PRD 93 (2016) 034501

Tetraquark static energies
I=1 S. Prevlosek, H. Bahtiyar, J. Petrovich eprint: 1912.02656
|=0 Bicudo Cichy Peters Wagner PRD 93 (2016) 034501

Mixing between quarkonium, hybrids; hybrids, tetraquarks
Preliminary studies N. B. , Schlosser, Wagner, Vairo

Tetraquark static energies
I=1 S. Prevlosek, H. Bahtiyar, J. Petrovich eprint: 1912.02656
|=0 Bicudo Cichy Peters Wagner PRD 93 (2016) 034501

Mixing between quarkonium, hybrids; hybrids, tetraquarks
Preliminary studies N. B. , Schlosser, Wagner, Vairo

Cross talk with the heavy light static energies

Adiabatic energy levels of the static energy of quarkonium and heavy-light, heavylight strange->
avoided level crossing

Adiabatic energy levels of the static energy of quarkonium and heavy-light, heavylight strange-> avoided level crossing

In the diabatic picture gives the coupling between quarkonium and heavy light states allowing to solve the coupled schoedinger eqs and determine the amount of quarkonium and molecular states

$$
\left(\begin{array}{ccc}
\hat{V}(r) & g_{1} & g_{2} \\
g_{1} & \hat{E}_{1} & 0 \\
g_{2} & 0 & \hat{E}_{2}
\end{array}\right)
$$

Adiabatic energy levels of the static energy of quarkonium and heavy-light, heavylight strange-> avoided level crossing

In the diabatic picture gives the coupling between quarkonium and heavy light states allowing to solve the coupled schoedinger eqs and determine the amount of quarkonium and molecular states

$$
\left(\begin{array}{ccl}
\hat{V}(r) & g_{1} & g_{2} \\
g_{1} & \hat{E}_{1} & 0 \\
g_{2} & 0 & \hat{E}_{2}
\end{array}\right)
$$

The same cross talk with the heavy light static energies should be studied for hybrids and tetraquarks

Adiabatic energy levels of the static energy of quarkonium and heavy-light, heavylight strange-> avoided level crossing

In the diabatic picture gives the coupling between quarkonium and heavy light states allowing to solve the coupled schoedinger eqs and determine the amount of quarkonium and molecular states

$$
\left(\begin{array}{ccl}
\hat{V}(r) & g_{1} & g_{2} \\
g_{1} & \hat{E}_{1} & 0 \\
g_{2} & 0 & \hat{E}_{2}
\end{array}\right)
$$

The same cross talk with the heavy light static energies should be studied for hybrids and tetraquarks

In this way special states with strong molecular components and characteristics like the $\mathbf{X}(3872)$ can be originated In BOEFT

The BOEFT contains all models: what dominates and where depends on the

The static energies are defined in BOEFT that gives the appropriate set of operators to be used
and could describe the short distance limit.
Being nonperturbative objects $E(r)$ should be calculated on the lattice (or in QCD vacuum models)
Figure from J. Tarrus

The BOEFT contains all models: what dominates and where depends on the

The static energies are defined in BOEFT that gives the appropriate set of operators to be used and could describe the short distance limit. Being nonperturbative objects $E(r)$ should be calculated on the lattice (or in QCD vacuum models)

Bottomonium Nuclear Modification factor
can be obtained using pNRQCD at finite temperature, density matrix, and open quantum systems

$$
R_{A A}(n S)=\frac{\langle n, \mathbf{q}| \rho_{s}\left(t_{F} ; t_{F}\right)|n, \mathbf{q}\rangle}{\langle n, \mathbf{q}| \rho_{s}(0 ; 0)|n, \mathbf{q}\rangle}
$$

Quarkonium production can factorized and calculated in pNRQCD
N.B., Chung, Vairo, Wang 2210.17345

NREFTs and lattice allows us to describe the physics of quarkonium away from the strong decay
threshold in quantum field theory: higher order perturbative calculation can be performed and quarkonium can be used for precision physics/ factorisation allows to systematically studyconfinement

BOEFT allows to describe hybrids: new unexpected features are found (Lambda doubling, Spin structure, decays, mixing) that have important impact on the phenomenology

BOEFT allows to describe hybrids and calculate multiplets, mixing and decays: on going work
The same picture can be extended to tetraquarks and pentaquarks, once some lattice input on relevant correlators will be available.
NOTICE that the needed lattice calculations are simpler than the direct calculations of the $X Y Z$ properties on the lattice, the knowledge of few correlators together with the BOEFTwill allow to obtain many phenomenological information
NREFTs and lattice and open quantum system allows us to describe the nonequilibrium evolution quarkonium in the quark gluon plasma and production processes: same theory could be then used for XYZ production and evolution in medium in heavy ion collisions

This picture has the possibility to give a unified description to exotics and to leave the dynamics decide which configuration will dominate in a given range

Material for discussion/references

```
N. Brambilla, A. Pineda, J. Soto, A. Vairo
    Rev. Mod. Phys }77\mathrm{ (2005) 1423 • hep-ph/0410047
```

N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C. P. Shen, C. E. Thomas, A. Vairo and C. Z. Yuan

The XY Z states: experimental and theoretical status and perspectives
Phys.Rept. 873 (2020) 1-154 • e-Print: 1907.07583 [hep-ex]

pNRQCD

N. Brambilla, A. Pineda J. Soto, A. Vairo Nucl. Phys. B566 (2000) 275• hep-ph/9907240
A. Pineda J. Soto, hep-ph/9707481

Quarkonium Hybrids with Nonrelativistic Effective Field Theories

Matthias Berwein , Nora Brambilla, Jaume Tarrús Castellà, Antonio Vairo
Phys.Rev. D92 (2015) no.11, 114019
e-Print: arXiv:1510.04299
Spin structure of heavy-quark hybrids
N. Brambilla, Wai KIn Lai, J. Segovia, J. Tarrus
A. Vairo

Phys.Rev.D 99 (2019) 1, 014017, e-Print:
1805.07713 [hep-ph]

Heavy hybrids decays to quarkonia
N. Brambilla, A. Mohapatra A. Vairo

Phys.Rev.D 107 (2023) 5, 054034, e-Print:
2212.09187[hep-ph]

Born-Oppenheimer approximation in an effective field theory language Nora Brambilla , Gastão Krein, Jaume Tarrús Castellà, Antonio Vairo Phys.Rev. D97 (2018) no.1, 016016
e-Print: arXiv:1707.09647

Long range properties of 1 S bottomonium states

N. Brambilla, G. Krein, J.. Tarrus, A. Vairo Phys.Rev.D 93 (2016) 5, 054002 • e-Print: 1510.05895

QCD spin effects in the heavy hybrid potentials and spectra Nora Brambilla, Wai Kin Lai, J. Segovia, J. Tarrus Phys.Rev.D 101 (2020) 5, 054040 • e-Print: 1908.11699

Oncala and Soto

 Phys.Rev.D 96 (2017) 1, 014004 •Heavy hybrids: spectrum, decay and mixing

Material for discussion/references

Inclusive production of $\mathrm{J} / \mathrm{psi}$ psi(2s) Y states in pNRQCD
N. Brambilla, H. S. Chung, A. Vairo, X.P. Wang JHEP 03 (2023) 2422210.17345

Determination of the QCD coupling from the static energy and the free energy
A. Bazavov N. Brambilla, et al TUMQCD Phys.Rev.D 100 (2019) 11, 114511 e-Print: 1907.11747[hep-ph]

alpha_s

Quarkonium
Production

Extraction

LATTICE

Static energy in $(2+1+1)$ flavor lattice QCD
N. Brambilla, et al TUMQCD Phys.Rev.D 107 (2023) 7, 074503, e-Print:

EFTs and Lattice for XYZ
N. Brambilla
e-Print: 2111.10788[hep-ph]
2206.03156[hep-ph]

Gradient Flow

Perturbative calculations

QCD static force in gradient flow

N. Brambilla et al JHEP 01 (2022) 184
e-Print: 2111.07811[hep-ph]

Gradient Flow
 Lattice calculations

QCD Force

J. Mayer-Steudte N. Brambilla et al TUMQCD e-Print: $2212.12400[$ [hep-ph]

Lattice computation of the static force
N. Brambilla, V. Leino et al TUMQCD

Phys.Rev.D 105 (2022) 5, 054514 e-Print:
2106.01794 hep-ph]

Material for discussion/references

N. Brambilla, M. A. Escobedo, J. Soto and A. Vairo, Phys. Rev. D

96 (2017) no.3, 034021 [arXiv:1612.07248 [hep-ph]].
N. Brambilla, M. A. Escobedo, J. Soto and A. Vairo, Phys. Rev. D

97 (2018) no.7, 074009 [arXiv:1711.04515 [hep-ph]].
N. Brambilla, M. A. Escobedo, A. Vairo and P. Vander Griend, Phys.

Non-equilibrium

 evolution in QGPRev. D 100 (2019) no.5, 054025 [arXiv:1903.08063 [hep-ph]].
N. Brambilla, M. A. Escobedo, M. Strickland, A. Vairo, P. Vander

Griend and J. H. Weber, [arXiv:2012.01240 [hep-ph]]. and arXiv: 2107.06222
M. Escobedo Phys.Rev.D 103 (2021) 3, 034010 • e-Print: 2010.10424 [
N. Brambilla, M. Escobedo, A. Islam, M. Strickland. A. Tiwari, A. Vairo arXiv 2205.10289

Regeneration of bottomonia in an open quantum systems approach
N. Brambilla, M. Escobedo, M Strickland et al 2302.11826
N. Brambilla, J. Ghiglieri, A. Vairo, Peter Petreczky Phys.Rev.D 78 (2008) 014017 • e-Print: 0804.0993 [hep-ph]
N. Brambilla, M. Escobedo, J. Ghiglieri, A. Vairo JHEP 05 (2013) 130 • e-Print: 1303.6097 [hep-ph]
N. Brambilla, M. Escobedo, J. Ghiglieri, A. Vairo JHEP 12 (2011) 116 • e-Print: 1109.5826 [hep-ph]
N. Brambilla, M. Escobedo, J. Ghiglieri, J. Soto, A. Vairo JHEP 09 (2010) 038 • e-Print: 1007.4156 [hep-ph]
N. Brambilla, V. Leino, Peter Petreczky, A. Vairo e-Print 2007.10078 [hep-ph],
N. Brambilla, V. Leino, J. Meyer Steudte,P. Petreczky 2206.02861

Potential and energies

 in mediumLattice calculation of the heavy quark transport coefficient

Tetraquarks	Order	$M_{Q \bar{Q} Q \bar{Q}}[\mathrm{GeV}]$	$B_{Q \bar{Q} Q \bar{Q}}[\mathrm{MeV}]$
$T_{c c \overline{c c}}$	LO	$6.1276(3)$	$16.6(4)$
	NLO	$6.078(2)$	$67.9(1)$
	NNLO $^{\prime}$	$6.018(3)$	$144(2)$
$T_{c c \bar{c} \bar{b}} / T_{b c \overline{c c}}$	LO	$9.294(3)$	$23.0(4)$
	NLO	$9.312(4)$	$72(2)$
	NNLO $^{\prime}$	$9.259(5)$	$139(2)$
$T_{b b \overline{c c}} / T_{c c \overline{b b}}$	LO	$12.503(1)$	$23.7(4)$
	NLO	$12.457(4)$	$79(2)$
	NLO $^{\prime}$	$12.386(3)$	$157(3)$
$T_{b c \bar{b} \bar{c}}$	LO	$12.471(5)$	$19.5(8)$
	NLO	$12.417(5)$	$69(2)$
	NNLO $^{\prime}$	$12.354(6)$	$139(2)$
$T_{b b \bar{b} \bar{c}} / T_{b c \overline{b b}}$	LO	$15.652(6)$	$27.9(7)$
	NLO	$15.50(2)$	$87(2)$
	NLO $^{\prime}$	$15.37(7)$	$169(4)$
$T_{b b \overline{b b}}$	LO	$18.8693(5)$	$31.2(6)$
	NLO	$18.8207(6)$	$83.6(1)$
	NNLO	$18.7598(6)$	$151(1)$

Variational and Green function Monte Carlo method based on Weakly coupled pNRQCD potential calculated at LO NLO and NNLO' (prime means only two body forces are considered)

Decays may be calculated in the same framework

TABLE II. Predictions for tetraquark masses and binding energies for all combinations of tetraquarks involving only b and c quarks at each order of pNRQCD indicated. Pairs of tetraquarks in the same row have identical binding energies in our calculations due to charge conjugation.

Low energy physics factorized in Wilson loops: can be used to probe the confinement mechanism
any QCD vacuum model is an assumption on the behaviour of the Wilson loop

Spectrum: general consideration

Multiplet	T	$J^{P C}(S=0)$	$J^{P C}(S=1)$	E_{Γ}
H_{1}	1	1^{--}	$(0,1,2)^{-+}$	$E_{\Sigma_{u}^{-}}, E_{\Pi_{u}}$
H_{2}	1	1^{++}	$(0,1,2)^{+-}$	$E_{\Pi_{u}}$
H_{3}	0	0^{++}	1^{+-}	$E_{\Sigma_{u}^{-}}$
H_{4}	2	2^{++}	$(1,2,3)^{+-}$	$E_{\Sigma_{u}^{-}}, E_{\Pi_{u}}$

Spin degenerated

Spectrum: with mixing and Λ-doubling

The Schrödinger equation mixes states with the same parity.
A consequence is Λ-doubling, i.e., the lifting of degeneracy between states with opposite parity. This happens also in molecular physics, however, there Λ-doubling is a subleading effect, while it is a LO effect in the quarkonium hybrid spectrum.

- The eigenstates are organized in the multiplets H_{1}, H_{2}, \ldots. Neglecting off-diagonal terms, the multiplets H_{1} and H_{2} would be degenerate.
- We compute the spectrum using quark masses in the renormalon subtraction (RS) scheme: $m_{c} \mathrm{RS}=1.477(40) \mathrm{GeV}$ and $m_{b \mathrm{RS}}=4.863(55) \mathrm{GeV}$.

The gluelump masses, which enter in the normalization of the hybrid potentials, have been computed in the same scheme and assigned an uncertainty of $\pm 0.15 \mathrm{GeV}$, which is the largest source of uncertainty in the hybrid masses.

[^0]: Schlosser, Wagner 2111.00741, Bali Pineda 2004

