Nuclear physics experiments at heavy ion storage rings

Yuri A Liltvinov

 FMMIPhysins Dave
Physics at Storage Rings

Single-particle sensitivity	High atomic charge states	Long storage times
Broad-band measurements	High resolving power	Very short lifetimes

Direct mass measurements of exotic nuclei
Radioactive decay of highly-charged ions
Charge radii measurements [DR, scattering]
Experiments with polarized beams
Experiments with isomeric beams [DR, reactions]
Nuclear magnetic moments [DR]
Astrophysical reactions $[(\mathrm{p}, \mathrm{g}),(\mathrm{a}, \mathrm{g}) \ldots]$
In-ring nuclear reactions

Physics at Storage Rings

GEMEINSCHAFT
포표

National Research Council's board für Physik und Astronomie

Spacial: Now Learning Stries on Genetics, page 70

The 11 Greatest Unanswered Questions of Physics
"Resolution of these profound questions could unlock the secrets of existence and deliver a new age of science within several decades"

1. What is dark matter?
2. What is dark energy?
3. How were the heavy elements from iron to uranium made?
4. Do neutrinos have mass?
5. Where do ultrahigh-energy particles come from?
6. Is a new theory of light and matter needed to explain what happens at very high energies and temperatures?
7. Are there new states of matter at ultrahigh temperatures and densities?
8. Are protons unstable?
9. What is gravity?
10. Are there additional dimensions?
11. How did the universe begin?

Nuclear processes in astrophysics

Standard Abundance Distribution (SAD) vs. A

Nucleosynthesis on the Chart of the Nuclides

Anzahl der Neutronen \qquad

Limits of nuclear stability: superheavies; p- and n- drip lines; pathways of stellar nucleosynthesis

To measure: Ground state properties of exotic nuclei:
masses and β decay half-lives
masses determine the pathways of s-, rp- and r-processes
β half-lives the accumulated abundances

1913 - J. Thompson, Discovery of Isotopes (Nobel prize 1906)

- Special Issue of Int. J. Mass Spectr. "Birth of Mass Spectrometry"
- DPG Symposium "100 Years of Mass Spectrometry", Hanover, 2013
- 513. WE-Heraeus Seminar: "Astrophysics with Ion-Storage Rings", January 2013
- 530. WE-Heraeus Seminar on "Nuclear Masses and Nucleosynthesis", April 2013
- New Atomic Mass Evaluation (AME2012) is to appear in 2013
helmholtz
|GEMEINSCHAFT

Current status of experimental nuclear masses

Up to 2004!

G. Audi et al., Nucl. Phys. A565, 1(1993); A 595, 409 (1995), A729.337(2003)

Predictive Powers of Mass Models

Devices for precise mass measurements

Penning trap

particles at nearly rest in space

Storage ring

relativistic particles

* ion cooling * long storage times
* single-ion sensitivity * high accuracy

Direct Mass Measurements on the Chart of the Nuclides

Secondary Beams of Short-Lived Nuclei

노표

Experimental Storage Ring ESR

Heavy Ion Research Facility in Lanzhou (HIRFL)

Experimental Gooler Storage Ring GSRe

Isochronous Mass Spectrometry

1985 - H. Wollnik, Y. Fujita, H. Geissel, G. Münzenberg, et al.

$$
\begin{array}{r}
\frac{\Delta \mathrm{f}}{\mathrm{f}}=-\frac{1}{\gamma_{\mathrm{t}}^{2}} \frac{\Delta(\mathrm{~m} / \mathrm{q})}{\mathrm{m} / \mathrm{q}}+\frac{\Delta \nu}{\gamma\left(-\frac{\gamma^{2}}{\gamma^{2}}\right)} \\
\gamma_{t} \rightarrow \gamma
\end{array}
$$

Isochronous Mass Spectrometry

1985 - H. Wollnik, et al.
$\frac{\Delta f}{f}=-\frac{1}{\gamma_{t}^{2}} \frac{\Delta(\mathrm{~m} / \mathrm{q})}{\mathrm{m} / \mathrm{q}}+\frac{\Delta \nu}{\gamma}\left(4-\frac{\gamma^{2}}{\gamma^{2}}\right)$

Isochronus-Mass-Spectrometry

토표

IMS: Time-of-Flight Spectra

Nuclei with half-lives as short as $20 \mu \mathrm{~s}$
About 13\% in mass-over-charae range

Mass Measurements of ${ }^{78} \mathrm{Kr}$ Projectile Fragments New masses of ${ }^{63} \mathrm{Ge},{ }^{65} \mathrm{As},{ }^{67} \mathrm{Se}$, and ${ }^{71} \mathrm{Kr}$

NUCLEAR ASTROPHYSICS

Star bursts pinned down

One of the main uncertainties in the burn-up of X -ray bursts from neutron stars has been removed with the weighing of a key nucleus, ${ }^{65} \mathrm{As}$, at a new ion storage ring.
NATURE PHYSICS | VOL 7 | APRIL 2011 | www.nature.com/naturephysics

brennpunkt

- Kein Halten am Wartepunkt

Hochpräzise Massenmessungen erklären die Kernreaktionen bei Ausbrüchen von Röntgenstrahlung.
Physik Journal 10 (2011) Nr. 6

Rate of ${ }^{71} \mathrm{Kr}$ was just 2 ions/day

80-90\% of the reaction flow passes through ${ }^{64} \mathrm{Ge}$ via proton capture reactions Light curve shape of Type I x-ray burst

X.Tu, et al., Phys. Rev. Lett. 106 (2011) 112501

Mass Measurements of ${ }^{58} \mathrm{Ni}$ Projectile Fragments New masses of ${ }^{43} \mathrm{~V},{ }^{45} \mathrm{Cr},{ }^{47 \mathrm{Mn}},{ }^{49} \mathrm{Fe},{ }^{51} \mathrm{Co},{ }^{53} \mathrm{NI}$, and ${ }^{55} \mathrm{Cu}$

$\mathrm{S}_{\mathrm{p}}\left({ }^{45} \mathrm{Cr}\right)=2.1(5) \mathrm{MeV}$ [AME03]

$$
\mathrm{S}_{\mathrm{p}}\left({ }^{45} \mathrm{Cr}\right)=2.69(13) \mathrm{MeV}
$$

X.L. Yan et al., in preparation (2012)

Mass Measurements of ${ }^{58} \mathrm{Ni}$ Projectile Fragments New masses of ${ }^{43} \mathrm{~V},{ }^{45} \mathrm{Cr},{ }^{47} \mathrm{Mn},{ }^{49} \mathrm{Fe},{ }^{51} \mathrm{Co}$, ${ }^{53} \mathrm{Ni}$, and ${ }^{55} \mathrm{Cu}$

Isobaric Multiplet Mass Equation
$M E\left(A, T, T_{z}\right)=a(A, T)+b(A, T) T_{z}+c(A, T) T_{z}^{2} \quad d T_{z}^{3} ?$

FAIR - Facility for Antiproton and Ion Research

Limitation of the Isochronicity

Magnetic rigidity

$$
B \rho=\frac{m}{q} v \gamma
$$

Good isochronous conditions are fulfilled only in a small range

CSRm-CSRe Complex at IMP in Lanzhou

ILIMA: Masses and Halfilives

stable nuclei
nuclides with known masses
G.Audi et al., Nucl. Phys. A729 (2003) 3

GSincepturd

토표

2. Capture reactions for astrophysics

ESR: ${ }^{96} \mathrm{Ru}(\mathrm{p}, \gamma)^{97} \mathrm{Rh}$ at $10 \mathrm{MeV} / \mathrm{u}$

ESR: ${ }^{96} \mathrm{Ru}(\mathrm{p}, \gamma)^{97} \mathrm{Rh}$ at $10 \mathrm{MeV} / \mathrm{u}$

- Measurements directly in the Gamow window of the p-process
- Applicable to radioactive beams
- Clean experimental conditions

$$
\sigma_{(p, \gamma)}=3.6(5) \cdot 10^{-3} b
$$

CRYRING@ESR

CRYRING@ESR:

A study group report

Study Group

Norbert Angert Angela Bräuning-Demian

Hakan Danared Wolfgang Enders Mats Engström Bernhard Franzke Anders Källberg Oliver Kester Michael Lestinsky Yuri Litvinov Markus Steck
Thomas Stöhlker

CRYRING@ESR

Project coordination:
F. Herfurth \& M. Lestinsky

Working group report: http://www.gsi.de/en/start/fair/fair experimente und kollaborationen/sparc/news.htm

The case of CRYRING

ESR: beam energies $>4.0 \mathrm{MeV} / \mathrm{u}$ reaction rates measurements in the Gamow window of the p-process [${ }^{96} \mathrm{Ru}(\mathrm{p}, \mathrm{g}){ }^{97} \mathrm{Rh}$, Zhong et al., 2010]

Cryring+ESR: beam energies $0.1-1.0 \mathrm{MeV} / \mathrm{u}$ reaction rates measurements in the Gamow window of the rp-process

One example: ${ }^{33} \mathrm{Cl}(\mathrm{p}, \gamma){ }^{34} \mathrm{Ar}$ by-pass of ${ }^{34 \mathrm{~m} \mathrm{Cl} ~} \gamma$-ray emitting isomer
Novae physics
Production of ${ }^{34 m, 5} \mathbf{C l}$

3. First transfer reaction measurement at the ESR

${ }^{15} \mathrm{O}(\mathrm{a}, \mathrm{g})^{19} \mathrm{Ne}$ reaction for the rp-process

Population of 4.033 MeV level in ${ }^{19} \mathrm{Ne}$ via (p, t) reaction on ${ }^{21} \mathrm{Ne}$

Measure g and a branching ratio
helmholtz
|GEMEINSCHAFT

Motivation:

A reaction possibly responsible for the break out of the hot CNO cycle
\qquad

Physics at Storage Rings

GEMEINSCHAFT
포표

HEOLide
 TSR @ Hie-Isolde

Eur. Phys. J. Special Topics 207, 1-117 (2012) (c) EDP Scjences, Springer-Verlag 2012	The European
DO1: 10.1140/epjps/ 20212.01599 .9	PHYSICAL JOURNAL
	Special topics

Review

Storage ring at HIE-ISOLDE

Technical design report
Physical Journal
SpECIAL TOPICS
-

The High Energy Storage Ring HESR

SPARC Experiments at the HESR:

A Feasibility Study

SPOFE

Thomas Stöhlker ${ }^{1,2,3}$, Reinhold Schuch ${ }^{4}$, Siegbert Hagmann ${ }^{1,5}$, Yuri A. Litvinov ${ }^{1,2}$ for the SPARC Collaboration*
Christina Dimopoulou ${ }^{1}$, Alexei Dolinskii ${ }^{1}$, \& Markus Steck ${ }^{1}$

RIKEN Radioactive Ion Beam Facility

Next-Generation Heavy-Ion Beam Facility HIAF

Thank you for your attention

Many－many thanks to all my colleagues from all over the world ！！！

中国科学晥近代物理研究所
Institute of Modern Physics，Chinese Academy of Sciences

MICHIGAN STATE
 UNIVERSITY

