

ExtreMe Matter Institute EMMI EMMI Physics Days 2012

GSI, Darmstadt, Germany November 13 - 14, 2012

Recent results from TRIGA-TRAP

Szilárd Nagy

Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117, Heidelberg

ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt

www.triga-trap.com

The mass defect

Macrocosm: mass surplus 🕲

$$B(N,Z) = [Nm_n + Zm_p - m(N,Z)]c^2$$

MAX PLANCK INSTITUT FOR NUCLEAR PHYSICS

Why do we need high-precision atomic masses?

Field	Examples	δm/m
Nuclear structure physics - separation of isobars	shell closures, shell quenching, OES, regions of deformation, drip lines, halos, S_n , S_p , S_{2n} , S_{2p} , δV_{pn} , island of stability	10 ⁻⁶ to 10 ⁻⁷
Astrophysics, nuclear models and mass formula - separation of isomers	rp-process and r-process path, waiting- point nuclei, proton threshold energies, astrophysical reaction rates, neutron star, x-ray burst	
Weak interaction studies	CVC hypothesis, CKM matrix unitarity, <i>Ft</i> of superallowed ß-emitters	10 ⁻⁸
Metrology, fundamental constants	α (h/m _{Cs,} m _{Cs} /m _{p,} m _p /m _e) m _{si}	10 ⁻⁹ to 10 ⁻¹⁰
Neutrino physics	m _{mother} –m _{daughter} : 0νββ, 0νεε β –decay, EC	≤ 10 ⁻⁸ ≤ 10 ⁻¹⁰
CPT tests	m_p and $m_{\overline{p}}$ m_{e} and m_{e+}	10 ⁻¹¹
QED in highly-charged ions - separation of atomic states	<i>m_{ion}, electron binding energy</i>	10 ⁻¹²

Mass uncertainty in the latest Atomic Mass Evaluation

ALPIANCE CENTLINESS

Penning Trap

the most accurate mass spectrometer

frequency measurement
long storage times
ion cooling
single ion sensitivity
high precision

$$v_{c} = \frac{1}{2\pi} \frac{qB}{m} = \sqrt{v_{-}^{2} + v_{z}^{2} + v_{+}^{2}} ; v_{c} = v_{+} + v_{-}$$

L. S. Brown, G. Gabrielse, Phys. Rev. A, 25, 2423 (1982)

typical cyclotron frequency: q = 1+, m = 100 u, B = 7 T $\Rightarrow v_c = 1$ MHz

Penning-trap mass measurement in a nutshell

000000

ion of interest

m = ? u

...

INSTI

CLEAR

AX OR Training Research Isotopes General Atomics MAINZ

•Built on the initiative of F.Straßmann •First pulse in 1967 by O. Hahn •Operation of about 200 days/year •Steady state mode: 100 kWth •Pulse mode: 250 MWth

1

TRIGA-TRAP K. Blaum

TRIGA-LASER W. Nörtershäuser

D

AMIR

go'

TODBAR

TRIGA-TRAP technical details

Neutrinoless double-electron capture ($\theta v \varepsilon \varepsilon$)

are extremely rare processes and have not been observed yet

 $0\nu\beta\beta (T_{1/2}>10^{25}y)$ $0\nu\varepsilon\varepsilon (T_{1/2}>10^{30}y)$

$$\frac{1}{T_{1/2}} = C \times \frac{\Gamma}{(Q - B_{2h} - E_{\gamma})^2 + \frac{1}{4}\Gamma^2} \times |M|^2 \times |\Psi_{1e}|^2 \times |\Psi_{2e}|^2 \times m_{\nu}^2$$

Resonant enhancement possible!

Search for nuclides with $\Delta = (Q_{\varepsilon\varepsilon} - B_{2h} - E_{\gamma}) < 1$ keV by measurements of $Q_{\varepsilon\varepsilon}$ -values

Resonance enhancement factors

MAX PLANCK INSTITUTE FOR NUCLEAR PHYSICS

Recent TRIGA-TRAP results

inaccurate or imprecise Q-value is a limiting factor

C.Smorra. et al., Phys. Rev. C 86, 044604 (2012)

MALPIANE CRATLATOP

TRIGA-TRAP Q-value results

$E_{_{\gamma}}$ / keV	$m{J}_f^{\pi}$	$Q_{\scriptscriptstyle lit}$ / keV	$\mathit{Q}_{\scriptscriptstyle{meas}}$ / keV	Δ / keV
$^{106}Cd \xrightarrow{2\varepsilon} ^{106}Pd$ 2748.2 (0.4)	(2,3) ⁻	2770 (7) SHIPTRAP:	<mark>2775.01 (0.56)</mark> 2775.39 (0.10)	-0.73(0.69) -0.33(0.41)
	0+ 2+	272 (6)	272.04 (0.55)	> 200
$ \overset{184}{O}s \xrightarrow{2\varepsilon} \overset{184}{\longrightarrow} W $ 1322 .152 (0.022)	0+	1451.2(1.6)	1453.68(0.58)	11.3 (1.6) 8.83(0.58)
$^{110}Pd \xrightarrow{2\beta^{-}} ^{110}Cd$		2004 (11) ISOLTRAP:	2017.8 (1.2) 2017.85 (0.64)	

Max Planck Instit for Nuclear Phys

> C.Smorra. et al., Phys. Rev. C 85, 027601 (2012) C.Smorra. et al., Phys. Rev. C 86, 044604 (2012)

M. Goncharov et al., Phys. Rev. C 84, 028501 (2011) D. Fink et al., Phys. Rev. Lett. 108, 062502 (2012)

NME calculations using EDF

MAX PLANCK INSTITUTE FOR NUCLEAR PHYSICS

T.R. Rodríguez, G. Pinedo, K. Langanke (2012)

The Ovee half-life of ¹⁸⁴Os

MAX PLANCK INSTITUTI FOR NUCLEAR PHYSICS

Search for $0v\epsilon\epsilon$ nuclides with Penning traps

Measurements @: O CPT, O JYFLTRAP, O FSU, O SHIPTRAP and TRIGA-TRAP

Best candidates:

 $T_{1/2} = 10^{28} - 10^{29} y$

Natural abundance: 0.014%

Left to do:

190 650 Gy 0⁺ M - 37323 (6) Abundance=0.014 (1)% α=100%

Summary

Penning-trap mass measurements contribute to neutrino physics via precise Q-values

➢Q-value measurements of double-beta transitions of ¹⁰⁶Cd, ¹⁰⁸Cd, ¹¹⁰Pd and ¹⁸⁴Os @ TRIGA-TRAP

>Uncertainties of the Q-values and mass values were improved

➢ Resonance condition in ¹⁰⁶Cd, ¹⁰⁸Cd and ¹⁸⁴Os were investigated

> The Ovee half-life of ¹⁸⁴Os was re-evaluated

Outlook

TRIGA-TRAP will focus on:

>measuring actinoides

>online measurement of short-lived radionuclides

> development of non-destructive detection

TRIGA-SPEC is a development platform for MATS and LaSpec within NUSTAR at FAIR@GSI

Acknowledgement

erc

Deutsche Forschungsgemeinschaft DFG

MPI-K Heidelberg Prof. K. Blaum S. Eliseev C. Smorra M. Eibach T. Beyer

THANK YOU!

Inst. f. Kernchemie, UNI-Mainz

Prof. W. Nörtershäuser

- C. Geppert
- J. Krämer
- A. Krieger
- N. Frömmgen
- M. Hammen

Prof. Ch. E. Düllmann D. Renisch,

K. Eberhardt N. Trautmann J. Runke N. Wiehl

Inst. f. Physik, UNI-Mainz Prof. K. Wendt

F. Schneider

GSI Darmstadt

M. Block F. Herfurth

TRIGA-SPEC collaboration MATS collaboration TRIGA Mainz reactor staff

aax Planck Institut for Nuclear Physic

