

Universality in Halo Systems

H.-W. Hammer

Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics Universität Bonn

Bethe Center for Theoretical Physics Bundesministerium für Bildung und Forschung Deutsche Forschungsgemeinschaft

DFG

EMMI Physics Days, Darmstadt, Nov. 13-14, 2012

- Introduction
- Resonant interactions and the unitary limit
 - Efimov physics in ultracold atoms
 - Hadronic molecules
 - Shallow bound states in a box
 - Topological phases
 - Halo nuclei
- Summary and Outlook

Universality and Pointilism

Painting at the limit of resolution of the human eye

Universality and Pointilism

Painting at the limit of resolution of the human eye

G. Seurat, A Sunday on La Grande Jatte

Physics Near the Unitary Limit

- Consider system with short-ranged, resonant interactions
- Unitary limit: $a \to \infty$, $\ell \to 0$ (cf. Bertsch problem, 2000)

$$\mathcal{T}_2(k,k) \propto \left[\underbrace{k \cot \delta}_{-1/a + r_e k^2/2 + \dots} -ik\right]^{-1} \implies i/k$$

- Scattering amplitude scale invariant, saturates unitarity bound
- Interesting many-body physics: BEC/BCS crossover, universal viscosity bound ⇒ perfect liquid, ...

Physics Near the Unitary Limit

- Consider system with short-ranged, resonant interactions
- Unitary limit: $a \to \infty$, $\ell \to 0$ (cf. Bertsch problem, 2000)

$$\mathcal{T}_2(k,k) \propto \left[\underbrace{k \cot \delta}_{-1/a + r_e k^2/2 + \dots} -ik\right]^{-1} \implies i/k$$

- Scattering amplitude scale invariant, saturates unitarity bound
- Interesting many-body physics: BEC/BCS crossover, universal viscosity bound ⇒ perfect liquid, ...
- Use as starting point for description of few-body properties
 - Large scattering length: $|a| \gg \ell \sim r_e, l_{vdW}, ...$
 - Natural expansion parameter: $\ell/|a|$, $k\ell$,...
 - Universal dimer with energy $E_d = -1/(ma^2)$ (a > 0)

size
$$\langle r^2 \rangle^{1/2} = a/2 \implies$$
 halo state

Effective Lagrangian

(Kaplan, 1997; Bedaque, HWH, van Kolck, 1999)

 $\mathcal{L}_d = \psi^{\dagger} \left(i\partial_t + \frac{\vec{\nabla}^2}{2m} \right) \psi + \frac{g_2}{4} d^{\dagger} d - \frac{g_2}{4} (d^{\dagger} \psi^2 + (\psi^{\dagger})^2 d) - \frac{g_3}{36} d^{\dagger} d\psi^{\dagger} \psi + \dots$

- 2-body amplitude: --- = --- + --- + --- + --- + ---
- 2-body coupling g_2 near fixed point (1/a = 0)

 $\Rightarrow \text{ scale and conformal invariance} \iff$ (Mehen, Stewart, Wise, 2000; Nishida, Son, 2007; ...)

• 3-body amplitude: $g_3(\Lambda) \Rightarrow \text{limit cycle} \Rightarrow \text{discrete scale inv.}$ = 4 + 4

unitary limit

Limit Cycle

- RG invariance \implies running coupling $H(\Lambda) = g_3 \Lambda^2 / (9g_2^2)$
- $H(\Lambda)$ periodic: limit cycle

 $\Lambda \to \Lambda \, e^{n\pi/s_0} \approx \Lambda(22.7)^n$

(cf. Wilson, 1971)

 Anomaly: scale invariance broken to discrete subgroup

$$H(\Lambda) \approx \frac{\cos(s_0 \ln(\Lambda/\Lambda_*) + \arctan(s_0))}{\cos(s_0 \ln(\Lambda/\Lambda_*) - \arctan(s_0))}, \quad s_0 \approx 1.00624$$

(Bedaque, HWH, van Kolck, 1999)

- Three-body parameter: Λ_*, \ldots
- Limit cycle ⇔ Discrete scale invariance

Limit Cycle: Efimov Effect

Universal spectrum of three-body states

(Efimov, 1970)

universität**bonn**

- Discrete scale invariance for fixed angle ξ
- Geometrical spectrum for $1/a \rightarrow 0$

$$B_3^{(n)}/B_3^{(n+1)} \xrightarrow{1/a \to 0} \left(e^{\pi/s_0}\right)^2 = 515.035...$$

• Ultracold atoms \implies variable scattering length \implies loss resonances

Efimov States in Ultracold Atoms

- Efimov physics has now been observed in ¹³³Cs, ⁶Li, ⁷Li, ³⁹K, ⁴¹K/⁸⁷Rb
- Example: Efimov spectrum in ⁷Li $(|m_F = 0\rangle, |m_F = 1\rangle)$ (Gross et al. (Bar-Ilan Univ.), Phys. Rev. Lett. **105** (2010) 103203)

- Data described by universal theory (Braaten, HWH, 2000, ..., 2006)
- **Future:** dipolar interactions, confined systems, ...

Hadronic Molecules

- New $c\bar{c}$ states at B factories: X, Y, Z
- **Example:** X(3872) (Belle, CDF, BaBar, D0)
- No ordinary $c\bar{c}$ -state
 - Decays violate isospin
 - Measured mass depends on decay channel

$m_X = (3871.68 \pm 0.17) \text{ MeV}$	$\Gamma < 1.2 \; { m MeV}$	$J^{PC} = 1^{++}$ or 2^{-+}
--	----------------------------	-------------------------------

- Nature of X(3872)? $\bar{D}^0 D^{0*}$ -molecule, tetraquark, charmonium hybrid, ...
- Molecular nature \Rightarrow interaction of X(3872) with D^0 , \overline{D}^0 , D^{0*} , \overline{D}^{0*} determined by large scattering length

Predictions for scattering amplitude/cross section

Canham, HWH, Springer, Phys. Rev. D 80, 014009 (2009)

Three-body scattering lengths:

 $a_{D^0X} = -9.7a \approx -85 \text{ fm}$ $a_{D^{*0}X} = -16.6 a \approx -146 \text{ fm}$

universität**bonn**

Volume Dependence of Cluster States

- Finite volume dependence required for ab initio lattice calculations (cubic box $\sim L^3$) (cf. Epelbaum et al., PRL **106** (2011) 192501)
 - L-dependence of 2-body halo states behaves as 2-body system
- Mass shift from overlap of copies from periodic boundary cond.

$$\Delta E_B = \sum_{|\mathbf{n}|=1} \int d^3 \mathbf{r} \ \psi_B^*(\mathbf{r}) V(\mathbf{r}) \psi_B(\mathbf{r} + \mathbf{n}L) + \mathcal{O}(e^{-\sqrt{2}\kappa L})$$

S-wave bound states (Lüscher, 1986)

$$\Delta E_B = E_B(\infty) - E_B(L) = -3|\gamma|^2 \frac{e^{-\kappa L}}{\mu L} + \mathcal{O}(e^{-\sqrt{2\kappa L}})$$

Volume Dependence of Cluster States

- Finite volume dependence required for ab initio lattice calculations (cubic box $\sim L^3$) (cf. Epelbaum et al., PRL **106** (2011) 192501)
 - L-dependence of 2-body halo states behaves as 2-body system
- Mass shift from overlap of copies from periodic boundary cond.

$$\Delta E_B = \sum_{|\mathbf{n}|=1} \int d^3 \mathbf{r} \ \psi_B^*(\mathbf{r}) V(\mathbf{r}) \psi_B(\mathbf{r} + \mathbf{n}L) + \mathcal{O}(e^{-\sqrt{2}\kappa L})$$

■ Generalization to higher ℓ, e.g. P-waves (König, Lee, HWH, PRL 107 (2011) 112001)

$$\Delta E_B^{(1,0)} = \Delta E_B^{(1,\pm 1)} = +3|\gamma|^2 \frac{e^{-\kappa L}}{\mu L} + \mathcal{O}(e^{-\sqrt{2}\kappa L})$$

Volume Dependence of Cluster States

Different sign for even and odd partial waves

⇒ can be understood from curvature of wave function at the boundary

● m-dependence for D- and higher waves, but

$$\sum_{m=-\ell}^{\ell} \Delta E_B^{(\ell,m)} = (-1)^{\ell+1} (2\ell+1) \cdot 3|\gamma|^2 \frac{e^{-\kappa L}}{\mu L} + \mathcal{O}(e^{-\sqrt{2}\kappa L})$$

universität**bonn**

Topological Phase Corrections

- Topological phase for scattering of bound states
- Factorize center-of-mass motion

$$\psi_L(\vec{r}_1, \vec{r}_2) = e^{i2\pi\alpha\vec{k}\cdot\vec{r}_1/L}e^{i2\pi(1-\alpha)\vec{k}\cdot\vec{r}_2/L}\phi_L(\vec{r}_1 - \vec{r}_2), \quad \alpha = m_1/(m_1 + m_2)$$

• Periodicity of ψ_L induces topological phase for winding of ϕ_L around cube

$$\phi_L(\vec{r} + \vec{n}L) = e^{-i2\pi\alpha\vec{k}\cdot\vec{n}}\phi_L(\vec{r})$$

Energy correction:

$$\frac{\Delta E_{\vec{k}}(L)}{\Delta E_{\vec{0}}(L)} = \frac{1}{3} \sum_{l=1,2,3} \cos\left(2\pi\alpha k_l\right)$$

Bour, König, Lee, HWH, Meißner, Phys. Rev. D **84** (2012) 091503

universität**bon**

Topological Phase Corrections

- Fermion-dimer scattering (spin-1/2 fermions)
 - Lattice calculation:

$$\kappa a_{fd} = 1.174(9), \quad \kappa r_{fd} = -0.029(13)$$

• Continuum EFT: (cf. Simenog et al. (1984))

 $\kappa a_{fd} = 1.17907(1), \quad \kappa r_{fd} = -0.0383(3)$

Bour, HWH, Lee, Meißner, Phys. Rev. C 86 (2012) 034003

- Small, negative effective range
- Result also applies to quartet neutron-deuteron scattering
- Future extension: 4-body scattering calculations, ...

• Low separation energy of valence nucleons: $B_{valence} \ll B_{core}, E_{ex}$

 \longrightarrow close to "nucleon drip line" \longrightarrow scale separation \longrightarrow EFT

- Properties of ¹¹Be
 - Ground state: $J^P = 1/2^+$, neutron separation energy: 504 keV
 - Excited state: $J^P = 1/2^-$, neutron separation energy: 184 keV
- Properties of ¹⁰Be
 - Ground state: $J^P = 0^+$
 - First excitation: 3.4 MeV above g.s.
- Separation of scales: $E_{lo}/E_{hi} \approx \frac{0.5}{3.5} = \frac{1}{7} \Rightarrow R_{core}/R_{halo} \approx 0.4$
- \Rightarrow one neutron halo picture for ¹¹Be appropriate
- Effective range theory (Typel, Baur, 2004, 2005, 2008)
- EFT ⇒ straightforward coupling to external currents
- Study EM properties in halo EFT picture (HWH, Phillips, NPA 865 (2011) 17)

S-to-P Transition

- Irreducible transition vertex
 - $\Gamma_{ji} = \delta_{ji}\Gamma_E + (k_j q_i + \underline{q_j k_i})\Gamma_M \quad \text{for} \quad \mathbf{k} \cdot \mathbf{q} = 0, \quad \mathbf{k} \cdot \boldsymbol{\epsilon} = 0$
- Current conservation: $k_{\mu}\Gamma_{j\mu} = 0 \implies \omega\Gamma_{j0} = k_{j}\Gamma_{E}$
- B(E1) transition strength:

$$B(E1) = \frac{1}{4\pi} \left(\frac{\Gamma_E}{\omega}\right)^2 = \frac{Z_{eff}^2 e^2}{3\pi} \frac{\gamma_0}{-r_1} \left[\frac{2\gamma_1 + \gamma_0}{(\gamma_0 + \gamma_1)^2}\right]^2 + \dots$$

- No cutoff required: divergences cancel!
- Experiment: $B(E1) = 0.105...0.116 \ e^2 \ \text{fm}^2$ (Summers et al., PLB 650 (2007) 124; Millener et al., PRC 28 (1983) 497)
- Strategy: determine $r_1 = -0.66$ fm⁻¹ at LO

Coulomb Dissociation

Transition to the continuum:

Reasonable convergence

- At LO: no FSI
- At NLO:

$$r_1 = -0.66 \text{ fm}^{-1} \quad [B(E1)]$$

 $\sqrt{Z_{\sigma}} = 1.3 \quad \Rightarrow \quad r_0 = 2.7 \text{ fm}$

Detector resolution folded in

Data: Palit et al., PRC 68 (2003) 034318

- EFT gives correlations between different observables
- Example: B(E1) and radius of P-wave state

$$B(E1) = \frac{2e^2 Q_c^2}{15\pi} \left(\langle r_c^2 \rangle_{^{11}\text{Be}^*} - \langle r_c^2 \rangle_{^{10}\text{Be}} \right) x \left[\frac{1+2x}{(1+x)^2} \right]^2 + \dots ,$$

where $x = \sqrt{B_1/B_0}$

- Adapt strategy to experimental situation
- P-wave radius relative to ¹⁰Be core from B(E1)

$$\langle r_c^2 \rangle_{^{11}\mathrm{Be}^*} - \langle r_c^2 \rangle_{^{10}\mathrm{Be}} = 0.35...0.39 \,\mathrm{fm}^2$$

Universality: can be applied to any one-neutron halo nucleus with shallow S- and/or P-Wave State

universität**bo**

EM Form Factors

• Future extension: EM form factors of 2n halo nuclei

(Hagen, HWH, Platter, in progress)

Summary and Outlook

universität**bonn**

- Effective field theory for large scattering length
 - Discrete scale invariance, universal correlations, ...
- Applications in atomic, nuclear, and particle physics
 - Cold atoms close to Feshbach resonance
 - Few-body nuclei: halo nuclei, ...
 - Hadronic molecules: X(3872), ...

Summary and Outlook

universität**bonn**

- Effective field theory for large scattering length
 - Discrete scale invariance, universal correlations, ...
- Applications in atomic, nuclear, and particle physics
 - Cold atoms close to Feshbach resonance
 - Few-body nuclei: halo nuclei, ...
 - Hadronic molecules: X(3872), ...
- Future directions: exploring the unitary limit at different scales
 - Finite volume effects in lattice simulations
 - Hadronic molecules: b-quark sector, three-body molecules?, ...
 - Halo nuclei: drip line systems, external currents, reactions, ...
 - Cold atoms: dipolar interactions, confined geometries, heteronuclear systems, 2d-systems, P-waves, ...

Additional Slides

Physics Near the Unitary Limit

- universität**bonn**
- Unitary limit relevant at different scales: threshold states
- Particle physics: hadronic molecules
 - X(3872) as a $D^0 \bar{D}^{0*}$ molecule? $(J^{PC} = 1^{++})$ $B_X = (0.3 \pm 0.4) \text{ MeV}$
- Nuclear physics: drip line nuclei
 - 2N-system: $|a| \gg r_e \sim 1/m_\pi \longrightarrow B_d \approx 2.2 \text{ MeV}$
 - $^{11}\text{Be} \Rightarrow ^{10}\text{Be} + n$: $n \text{ separation energy} \approx 0.5 \text{ MeV}$
- Atomic physics:
 - ⁴He: $a \approx 104 \text{ Å} \gg r_e \approx 7 \text{ Å} \sim l_{vdW} \longrightarrow B_d \approx 100 \text{ neV}$
 - Feshbach resonances: a can be varied experimentally \implies tune system to the unitary limit

Broken Scale Invariance

- Three-boson system near the unitary limit
- Hyperspherical coordinates: $R^2 = (r_{12}^2 + r_{13}^2 + r_{23}^2)/3$
- Schrödinger equation simplifies for $|a| \gg R \gg l$:

- Singular Potential: renormalization required
- Boundary condition at small R: breaks scale invariance
 - \implies scale invariance is anomalous
 - \implies observables depend on 3-body parameter (and a)
- EFT formulation: boundary condition \Rightarrow 3-body interaction @ LO

universitätbo

Universal Correlations

- 2 Parameters at LO \Rightarrow 3-body observables are correlated \Rightarrow Phillips line (Phillips, 1968)
- No four-body parameter at LO (Platter, HWH, Meißner, 2004) \Rightarrow 4-body observables are correlated \Rightarrow Tjon line

- Variation of 3-body parameter generates correlations
- Nuclear physics: Λ dependence of V_{low-k} (Bogner et al., 2004)
- **J** Tjon line also at NLO (Kirscher et al., 2009)

universitätbo

Variable Scattering Length

Feshbach Resonance:

energy of molecular state in closed channel close to energy of scattering state

Tune scattering length via external magnetic field

(Tiesinga, Verhaar, Stoof, 1993)

• Example:

⁸⁵Rb atoms

$$\frac{a(B)}{a_0} = 1 + \frac{\Delta}{B_0 - B}$$

 $a_0 = -422$ a.u., $B_0 = 155.2$ G, $\Delta = 11.6$ G

- No four-body parameter at LO (Platter, HWH, Meißner, 2004)
- Universal properties of 4-body system with large a
 - Bound state spectrum, scattering observables, ...
- "Efimov-plot": 4-body bound state spectrum as function of 1/a

 Extension to thresholds and signature in Cs loss data (von Stecher et al., 2009; Ferlaino et al. (Innsbruck), 2009) universitätbo

Antisymmetrization Issues

 Core neutrons not active dof in halo EFT

Physics: exchange of core nucleon and halo nucleon only contributes to observables if there is spatial overlap between wave functions of core and halo nucleon

 \Rightarrow small for $R_{core} \ll R_{halo}$

• Effects subsumed in low-energy constants, included perturbatively in expansion in R_{core}/R_{halo}

Effective Field Theory for ¹¹**Be**

Introduce fields for neutron/core with S- and P-wave interactions

Effective Lagrangian at NLO

(cf. Bertulani, HWH, van Kolck, 2002; Bedaque, HWH, van Kolck, 2003)

$$\mathcal{L} = c^{\dagger} \left(i\partial_{t} + \frac{\nabla^{2}}{2M} \right) c + n^{\dagger} \left(i\partial_{t} + \frac{\nabla^{2}}{2m} \right) n$$

+ $\sigma^{\dagger} \left[\eta_{0} \left(i\partial_{t} + \frac{\nabla^{2}}{2M_{nc}} \right) + \Delta_{0} \right] \sigma + \pi_{j}^{\dagger} \left[\eta_{1} \left(i\partial_{t} + \frac{\nabla^{2}}{2M_{nc}} \right) + \Delta_{1} \right] \pi_{j}$
- $g_{0} \left[\sigma n^{\dagger} c^{\dagger} + \sigma^{\dagger} nc \right] - \frac{g_{1}}{2} \left[\pi_{j}^{\dagger} (n \ i \overleftrightarrow{\nabla}_{j} \ c) + (c^{\dagger} \ i \overleftrightarrow{\nabla}_{j} \ n^{\dagger}) \pi_{j} \right] + \dots$

Parameters:

- Leading order: g_0 , Δ_1 , $g_1 \leftarrow B_0$, B_1 , a_1 or $B(E1)(1/2^+ \rightarrow 1/2^-)$
- Next-to-leading order: $\Delta_0 \leftarrow B(E1)(1/2^+ \rightarrow 1/2^-)$ or dB/dE

universität**bo**

Effective Field Theory for ¹¹**Be**

- EFT generates S- and P-wave states from core-neutron contact interactions
- Reproduces correct asymptotics of wave functions for S- and P-wave states

$$u_0(r) = A_0 \exp(-\gamma_0 r)$$

$$u_1(r) = A_1 \exp(-\gamma_1 r) \left(1 + \frac{1}{\gamma_1 r}\right)$$

- Focus on observables: no discussion of *n*-core interaction at short distances, spectroscopic factors, ...
- Halo EFT: expansion in R_{core}/R_{halo}
- Generating the S- and P-wave states in Halo EFT:

 \implies sum the nc bubbles

Generating S- and P-Wave States

 Determine parameters from bound state pole and/or scattering parameters

$$D_{\pi}(p) \propto \frac{1}{r_1 + 3\gamma_1} \frac{1}{p_0 - \mathbf{p}^2/(2M_{nc}) + B_1} + \text{regular}$$

where $\gamma_1 = \sqrt{2m_RB_1}$

universität**bo**

Including Photons

- Minimal substitution: $\partial_{\mu} \rightarrow D_{\mu} = \partial_{\mu} + i e \hat{Q} A_{\mu}$
- S-wave form factor (LO):

 $G_c(|\mathbf{q}|) = \frac{2\gamma_0}{f|\mathbf{q}|} \arctan\left(\frac{f|\mathbf{q}|}{2\gamma_0}\right)$ where $f = m_R/M = 1/11$

• Charge radius of 11 Be relative to 10 Be:

$$\langle r_c^2 \rangle_{^{11}\text{Be}} = \langle r_c^2 \rangle_{^{10}\text{Be}} + \frac{f^2}{2\gamma_0^2} \frac{1}{1 - \gamma_0 r_0}$$

Results:

• At LO:
$$\langle r_c^2 \rangle_{^{11}\text{Be}} - \langle r_c^2 \rangle_{^{10}\text{Be}} = 0.19 \text{ fm}^2$$

• At NLO: $\langle r_c^2 \rangle_{^{11}\text{Be}} - \langle r_c^2 \rangle_{^{10}\text{Be}} = 0.27...0.32 \text{ fm}^2$

Comparison to experimental values

Nörteshäuser et al., Phys. Rev. Lett. 102 (2009) 062503

• Using the experimental value: $\sqrt{\langle r_c^2 \rangle_{^{10}\mathrm{Be}}} = 2.357(18)$ fm

• At LO:
$$\sqrt{\langle r_c^2 \rangle_{^{11}\mathrm{Be}}} = 2.40 \text{ fm}$$

- At NLO: $\sqrt{\langle r_c^2 \rangle_{^{11}\mathrm{Be}}} = 2.42 \ \mathrm{fm}$
- Experimental value: $\sqrt{\langle r_c^2 \rangle_{^{11}\mathrm{Be}}} = 2.463(16) \text{ fm}$

P-wave Form Factors

$$G_c(|\mathbf{q}|) = \frac{1}{r_1 + 3\gamma_1} \left[r_1 + \frac{1}{qf} \left(2qf\gamma_1 + (q^2f^2 + 2\gamma_1^2) \arctan\left(\frac{f|\mathbf{q}|}{2\gamma_1}\right) \right) \right]$$

• Charge radius of ¹¹Be*: $\langle r_c^2 \rangle_{^{11}\text{Be}^*} = \langle r_c^2 \rangle_{^{10}\text{Be}} - \frac{5f^2}{2\gamma_1 r_1}$

Using the experimental value (Nörteshäuser et al., PRL 102 (2009) 062503)

- At LO: $\sqrt{\langle r_c^2 \rangle_{^{11}\mathrm{Be}^*}} = (2.43 \pm 0.1) \,\mathrm{fm}$
- At NLO: unknown counterterm
- Quadrupole form factor also predicted (not measurable in J = 1/2 state)

Counter term contributions (not generated by minimal substitution)

$$\mathcal{L}_{EM} = -L_{C0}^{(\sigma)} \sigma_l^{\dagger} \underbrace{(\nabla^2 A_0 - \partial_0 (\nabla \cdot \mathbf{A}))}_{\nabla \cdot \mathbf{E}} \sigma_l$$
$$-L_{E1}^{(1/2)} \sum_{ll'j} \sigma_l \pi_{l'}^{\dagger} \left(\frac{1}{2} l \frac{1}{2} l' \middle| 1j \right) \underbrace{(\nabla_j A_0 - \partial_0 A_j)}_{\mathbf{E}_j}$$
$$-L_{C0}^{(\pi)} \pi_l^{\dagger} \underbrace{(\nabla^2 A_0 - \partial_0 (\nabla \cdot \mathbf{A}))}_{\nabla \cdot \mathbf{E}} \pi_l + \dots$$

- Where do they come in?
 - $L_{C0}^{(\sigma)}$: $\langle r_c^2 \rangle^{(\sigma)}$ at N3LO
 - $L_{C0}^{(\pi)}$: $\langle r_c^2 \rangle^{(\pi)}$ at NLO \implies accuracy of models
 - $L_{E1}^{(1/2)}$: B(E1) at NLO

Nature of X(3872)

- Nature of X(3872) not finally resolved
- Assumption: X(3872) is weakly-bound D^0 - \overline{D}^{0*} -molecule

 $\implies |X\rangle = (|D^0 \bar{D}^{0*}\rangle + |\bar{D}^0 D^{0*}\rangle)/\sqrt{2}, \qquad B_X = (0.26 \pm 0.41) \text{ MeV}$

 \implies universal properties (cf. Braaten et al., 2003-2008, ...)

- Explains isospin violation in decays of $X(3872) \Rightarrow$ superposition of I = 1 and I = 0
- Different masses due to different line shapes in decay channels
- Large scattering length to LO determines interaction of X(3872) with D^0 and D^{0*}
- Higher orders: EFT with perturbative pions

(Fleming, Kusunoki, Mehen, van Kolck, 2007; Fleming, Mehen, 2008) (Braaten, HWH, Mehen, 2010)

EFT for X(3872)

Effective Lagrangian

$$\mathcal{L} = \sum_{\substack{j=D^0, D^{*0}, \bar{D}^0, \bar{D}^{*0}}} \psi_j^{\dagger} \left(i\partial_t + \frac{\nabla^2}{2m_j} \right) \psi_j + \Delta X^{\dagger} X - \frac{g}{\sqrt{2}} \left(X^{\dagger} (\psi_{D^0} \psi_{\bar{D}^{*0}} + \psi_{D^{*0}} \psi_{\bar{D}^0}) + \mathsf{H.c.} \right) + \dots,$$

• Propagator of the X(3872)

Three-body integral equation

Experimental Observation ?

- Behavior of X(3872) produced in isolation should be distinguishable from its behavior when in the presence of $D^0, D^{*0}, \bar{D}^0, \bar{D}^{*0}$
- Final state interaction of D, D^* mesons in B_c -decays
- Example: quark-level B_c decay yielding three charmed/anticharmed quarks in final state

Process accessible at the LHC

Triton in a Finite Volume

- Light nuclei can also be described in an expansion around the unitary limit (Efimov 1981) \rightarrow pionless effective field theory
- Can be used to calculate volume dependence of triton binding energy

 \Rightarrow Lattice QCD calculations of light nuclei (e.g. NPLQCD collaboration)

• Modification of spectrum by cubic box ($V = L^3$)

- Box provides infrared cutoff 1/L
 - \Rightarrow calculable in EFT
- Box breaks rotational invariance
 - \Rightarrow partial wave mixing
- Momenta quantized $\vec{p} = \vec{n} \left(2\pi/L \right)$
 - \Rightarrow 3d sum equation

Kreuzer, HWH, Phys. Lett B 694 (2011) 424