Extreme Environments and the Origin of the Heavy Elements

November 13-14, 2012

Ani Aprahamian University of Notre Dame Notre Dame, IN USA

EMMI Physics Days....

Connecting Quarks with the Cosmos

NATIONAL RESEARCH COUNCIL

What is dark matter? What is dark energy? • How did the universe begin? Was Einstein right about gravity? How have v-s shaped the universe? What are nature's most energetic particles? Are protons stable? Are there new states of matter at exceedingly high density/energy? Are there additional dimensions? How were elements Fe to U

made? • Is a new theory needed at the highest energies and EM Fields?

Each heavy atom in our body was built and processed through ~100-1000 star generations since the Big Bang event!

We are made of star stuff Carl Sagan

Nuclei are made in Stars

Nucleosynthesis Processes in Stars

r-process

Masses β-decay rates n-capture

Major Shells and evolution of shells...

Experimental & Theoretical Challenges

Available online at www.sciencedirect.com

Progress in Particle and Nuclear Physics

Progress in Particle and Nuclear Physics 54 (2005) 535-613

www.elsevier.com/locate/ppnp

Review

Nuclear structure aspects in nuclear astrophysics

A. Aprahamian^a, K. Langanke^b, M. Wiescher^{a,*}

^aDepartment of Physics and the Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556, USA ^bInstitut for Fysik og Astronomi, Aarhus Universitet, DK-8000 Aarhus C, Denmark

⁷⁸Ni , ⁷⁷Ni first measurement of half-lives
⁷⁶Ni , ⁷⁵Ni more precise measurements

110^{+100/-60} ms; 128^{+27/-33} ms

238^{+15/-18} ms; 344^{+20/-24} ms

Hosmer et al. PRL 94, 112501 (2005)

Impact of ⁷⁸Ni half-life on r-process models

→need to readjust r-process model parameters

→Can obtain Experimental constraints for r-process models from observations and solid nuclear physics

N=56 subshell with Z=34???

Fragmentation of 120 MeV/u ¹³⁶Xe beam

ToF _{Im2-N3} (a.u.)~Am₀

Implantations Maximum Likelihood Method (ms)

⁸⁷ As	27	12	$1450(550)^{+3900}_{-1250}$
^{88}As	16	8	$200(10)^{+200}_{-90}$
⁸⁸ Se	144	74	$650(35)^{+175}_{-140}$
⁸⁹ Se	180	90	$345(25)^{+95}_{-80}$
⁹⁰ Se	70	30	$195(10)^{+95}_{-65}$

Quinn et al., Phys. Rev. C 85, 035807 (2012)

How do you decide which nuclei to measure???

Nucleosynthesis in the r-process

Masses beta-decay half-lives

So, What are we doing?

Simulations..... Varied astrophysical conditions varied seed nuclei varied mass models

Input astrophysical conditions

Temperature/density neutron/seed ratios Freeze-out times

Input nuclear physics

masses n-capture rates beta decay half-lives (fission recycling, alpha recycling, neutrino interactions off)

Neutron separation energy sensitivity study

S. Brett, I. Bentley, N. Paul, R. Surman, A. Aprahamian

Start with a baseline simulation

(here, the H-event conditions from Qian et al were used)

Vary one separation energy by 25% and rerun the simulation

Repeat 6957 times

(twice for each heavy nucleus in the network)

$$\Delta Y_{S_n(Z_i,A_i) \pm 25\%} = \sum_{A} \left[Y_{baseline}(A) - Y_{S_n(Z_i,A_i) \pm 25\%}(A) \right]$$

What is the mechanism behind observed sensitivities?

50

45

40

70

80

90

100

Ν

10

5.0 1.0

0.5 0.1

120

130

110

To start, proceed as in neutron separation energy study:

Vary one beta decay rate by an order of magnitude, rerun the simulation, and compare the final abundance pattern to the baseline

Beta-n channels

Data from Möller, Nix, Kratz, Atomic Data and Nuclear Data Tables, Vol. 66, p.131 Plot from R. Grzywacz

Plasma Physics

Atomic Physics

100 m

Antiproton

AIR

NESE

Production Target

🔵 existing facility

🔘 new facility

GANIL, France (2013)

summary

We have carried out the first quantitative/ comprehensive sensitivity study of an rprocess simulation to masses, beta decay rates, neutron capture cross sections. Goal is to use Nuclear Physics to put Constraints on potential r-process sites.

- consistent set of nuclei that we should measure

Sensitivity Study Masses

Samuel Brett

Ian Bentley

Nancy Paul

Rebecca Surman A²

Sensitivity Study β-decay rates
Julie Cass

Giuseppe Passucci

Rebecca Surman

ΔY for FRDM		ΔY for ETFSI-Q		ΔY for DZ		ΔY for HFB21	
Nucleus	ΔY	Nucleus	ΔY	Nucleus	ΔY	Nucleus	ΔY
¹³⁶ Cd	20.2	¹⁴⁰ Sn	20.1	⁸⁰ Ni	13.6	¹³⁶ Cd	22.7
¹⁴⁰ Sn	12.1	¹³⁶ Cd	19.0	⁷⁹ Ni	9.96	¹³⁷ Cd	10.8
¹³⁵ Cd	8.80	¹⁴² Sn	17.3	¹³⁸ Cd	7.08	¹³⁸ Cd	10.4
⁸³ Cu	8.42	¹³⁷ Cd	15.3	¹³⁷ Cd	5.49	¹³⁵ Cd	6.97
¹³⁹ Sn	8.19	⁷⁹ Ni	12.5	⁸³ Cu	4.27	¹⁴⁰ Sn	5.97
¹⁴² Sb	5.64	⁸⁰ Ni	12.0	¹³¹ Pd	3.54	¹³⁰ Pd	5.46
¹³⁵ Sn	5.44	¹³⁵ Cd	11.5	⁸² Cu	3.36	⁸³ Cu	5.23
¹³³ Cd	5.38	¹³⁴ Cd	11.5	¹³² Pd	3.12	¹⁴² Sn	4.66
¹⁴⁰ Sb	5.25	¹³⁸ Cd	8.57	¹³⁶ Cd	3.00	¹³⁴ Cd	4.57
¹³⁴ Cd	5.23	¹³² Pd	7.66	¹³⁰ Pd	2.97	¹⁴¹ Sn	4.21
⁸² Cu	4.14	¹³⁰ Pd	7.34	⁸⁶ Zn	2.84	⁸⁶ Zn	3.82
¹³⁴ In	4.14	¹³² In	7.33	¹²⁹ Pd	1.88	¹³³ Cd	3.52
¹³¹ Pd	3.29	¹²⁹ Pd	5.12	⁸⁵ Zn	1.81	¹³² Cd	3.04
¹³⁷ Sn	2.94	¹³⁹ Sn	4.63	¹³⁴ Ag	1.49	¹³⁷ Sn	2.86
¹⁴¹ Sn	2.91	¹³¹ Pd	4.37	¹⁴² Sn	1.42	⁸² Cu	2.63
⁸³ Zn	2.89	¹³⁸ In	3.98	¹³⁵ Ag	1.39	¹³⁸ In	2.47
⁸⁵ Zn	2.71	¹³⁹ In	3.95	¹³⁵ Cd	1.36	¹³⁹ In	2.23
⁸⁵ Cu	2.66	⁸⁶ Zn	3.21	¹³³ Cd	1.10	¹²⁹ Pd	1.95
¹³⁰ Pd	2.39	¹⁴¹ Sn	2.92	¹⁴¹ Sn	1.08	¹³¹ Pd	1.81
¹³² Pd	2.39	⁸⁵ Zn	2.86	¹⁴⁴ Sn	1.07	¹³¹ Ag	1.69

UNIVERSITY OF NOTRE DAME

Institute for Structure and Nuclear Astrophysics

