Impedance Simualtions and Bench Measurements for SIS100

TECHNISCHE UNIVERSITÄT DARMSTADT

Uwe Niedermayer and Oliver Boine-Frankenheim

29 June 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Uwe Niedermayer | 2

Contents

- Motivation
- Definitions
- SIS100 impedance spectrum overview
- Numerical calculation
 →TD vs. FD
- Simplified numerical calculation
 - Method & results
- Full numerical simulation in FD
- Preliminary TD results
- Bench measurements
- Current status and outlook

Motivation

- As discussed in Oliver Boine-Frankenheim's talk: Especially coasting beam and high intensity proton bunch are susceptible to impedance driven transverse instability
- The following components of SIS100 have been identified to cause large impedance contribution:
 → Beampipe (thin, flat dipole sections)
 - → Ferrite-Kicker and its supply network
 - → Proposed "Inductive Insert" for long. SC-comp.
 → Collimators

Rigid Beam Fields depend on structure Excited by leading charge z Measured by trailing charge $\vec{W}(\vec{r}_2, s) := \frac{1}{q_1 q_2} \int_{-\infty}^{\infty} \vec{F}(\vec{r}_2, z_2, \frac{z_2 + s}{v}) dz_2$ $= \frac{1}{a_1} \int_{-\infty}^{\infty} \left(\vec{E}(\vec{r}_2, z_2, \frac{z_2 + s}{v}) + \vec{v} \times \vec{B}(\vec{r}_2, z_2, \frac{z_2 + s}{v}) \right) dz_2.$ $\Delta \vec{p}(\vec{r}_2, s) = \frac{q_1 q_2}{n} \vec{W}(\vec{r}_2, s).$ Longitudinal Distribution $\vec{W}_{potential}(\vec{r},s) = \int_{-\infty}^{\infty} \vec{W}(\vec{r},s')\lambda_l(s-s')\mathrm{d}s'$

Wake Fields and Impedance cont'd

- Especially for many turn issues, a frequency domain description is prefered.
- This is called the beam coupling impedance

$$\underline{Z}_{\parallel}(\vec{r},\omega) = \frac{1}{v} \int_{-\infty}^{\infty} W_{\parallel}(\vec{r},s) e^{-i\omega s/v} ds$$
$$\underline{Z}_{\perp}(\vec{r},\omega) = \frac{-i}{v} \int_{-\infty}^{\infty} \vec{W}_{\perp}(\vec{r},s) e^{-i\omega s/v} ds$$

- Usually one performs a multipole expansion
 - Z long dominated by monopole
 - Z trans dominated by dipole

Details: See e.g. Palumbo et al. Wake Fields and Impedance, 1994

Definition of coupling impedances in FD

Displacement of the beam

Uniform cylindrical beam:

$$\sigma(\varrho,\varphi) \approx \frac{q}{\pi a^2} (\Theta(a^\prime - \varrho) + \delta(a - \varrho) d_x^\prime \cos \varphi)$$

Radius of the beam

$$\underline{J}_{s,z}(\varrho,\varphi,z,\omega) = \sigma e^{-i\omega z/v}$$

$$\underline{\varrho}_s(\varrho,\varphi,z,\omega) = \frac{1}{v}\sigma e^{-i\omega z/v}$$

- Rigid beam
- Finite integration length due to infinite pipe length

 $\underline{Z}_{\parallel}(\omega) = -\frac{1}{q^2} \int_{beam} \underline{\vec{E}} \cdot \underline{\vec{J}}_{\parallel}^* \mathrm{d}V \qquad \qquad \underline{Z}_{\perp,x}(\omega) = -\frac{v}{(qd_x)^2\omega} \int_{beam} \underline{\vec{E}} \cdot \underline{\vec{J}}_{\perp}^* \mathrm{d}V$

Details: See e.g. R. Gluckstern, CAS, 2000 or T. Weiland and R. Wanzenberg, CAS, 1992

Imaginary part dominated by SPACE CHARGE!

Dipolar

beam

The coupling impedance spectrum in SIS18 and SIS100

Time domain vs. Frequency domain

- Time Domain Calculations by commercial Software CST Particle Studio (Wake Potential)
- Impedances obtained by FFT
- Limitation by uncertainty relation
- Long wake length for low frequency $\Delta z \ge \frac{\beta c}{\Delta f} \approx 100 \text{ m} @ 1 \text{ MHz}$
- Large Gaussian bunchlength → impossibly long computation
- High computational effort for low velocity (large extension of source fields)
- \rightarrow FD approach pursued

for low and medium frequencies (<1GHz)

29 June 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Uwe Niedermayer | 9

Contents

- Motivation
- Definitions
- SIS100 impedance spectrum overview
- Numerical calculation \rightarrow TD vs. FD
- Simplified numerical calculation
 - Method & results
- Full numerical simulation in FD
- Preliminary TD results
- Bench measurements
- Current status and outlook

Analytical calculation

 $\partial_z \to -i\omega/v$

• "Axial model", beam with charge and current

$$\Delta_{\perp} - i\omega\mu_0\kappa - \frac{\omega^2}{\beta^2\gamma^2c^2}\Big)\underline{E}_z = -i\omega\mu_0\sigma(\vec{r})\frac{1}{\beta^2\gamma^2}e^{-i\omega z/v}$$

Simplified low frequency approach "Radial model"

$$l << \lambda = c/f \qquad \qquad \partial_z \to 0$$

$$\left(\triangle_{\perp} - i\omega\mu_0\kappa + \frac{\omega^2}{c^2}\right)\underline{E}_z = i\omega\mu_0\sigma(\vec{r})$$

• Suitable for LF impedance of beampipe

Simplified numerical method (according to "radial model")

Numerical calculation for SIS100 dipole chamber

29 June 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Uwe Niedermayer | 13

Motivation

Contents

- Definitions
- SIS100 impedance spectrum overview
- Numerical calculation \rightarrow TD vs. FD
- Simplified numerical calculation - Method & results
- Full numerical simulation in FD
- Preliminary TD results
- Bench measurements
- Current status and outlook

GSI

Full numerical simulation in FD

$$\nabla \times \frac{1}{\mu} \nabla \times \underline{\vec{E}} + i\omega\kappa\underline{\vec{E}} - \omega^2\varepsilon\underline{\vec{E}} = -i\omega\underline{\vec{J}}_{ext}$$

FIT is a mimetic discretization based on the INTEGRAL FORMULATION of Maxwell's equations (Weiland 1977)

$$\widetilde{\mathbf{C}}\mathbf{M}_{\mu^{-1}}\mathbf{C}\underline{\widehat{\mathbf{e}}} + i\omega\mathbf{M}_{\kappa}\underline{\widehat{\mathbf{e}}} - \omega^{2}\mathbf{M}_{\epsilon}\underline{\widehat{\mathbf{e}}} = -i\omega\underline{\widehat{\mathbf{j}}}_{ext}$$

Complex linear system of size 3np, indefinite ill-conditioned matrix

Implementation

First Results for Arbitrary Test Structure

Beam adapted boundary conitions

- Assume infinitely long beam pipe stubs
- Analytical solution would violate discrete charge conservation
- Create 2D subgrid (also called 2.5D approach)

 $\partial_z \rightarrow -i\omega/v$ $P_z \rightarrow diag(-1 + exp(-i\omega \Delta z/v))$

- Include solution as Neumann BC to preserve symmetry of the system matrix
- Currently under test in the C++ code

29 June 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Uwe Niedermayer | 18

- Full numerical simulation in FD
- Preliminary TD results
- Bench measurements
- Current status and outlook

Contents

- Motivation
- Definitions
- SIS100 impedance spectrum overview
- Numerical calculation \rightarrow TD vs. FD
- Simplified numerical calculation
 - Method & results

Time Domain Simulations (CST Particle Studio)

Time Domain Simulations cont'd (Preliminary results)

29 June 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Uwe Niedermayer | 21

UNILAC

HESR

RESR/

CR

NESR

Contents

- Motivation
- Definitions
- SIS100 impedance spectrum overview
- Numerical calculation
 →TD vs. FD
- Simplified numerical calculation
 - Method & results
- Full numerical simulation in FD
- Preliminary TD results
- Bench measurements
- Current status and outlook

CBM

FLAIR

Super-FRS

GSI

100 m

- existing facility

- new facility

- experiments

High Frequency Measurement setup

 $\underline{Z}^{lumped} = 2Z_c \frac{1-S_{21}}{S_{21}}$

Normalized S-parameters (to REF)

Walling 1989, Caspers 1992

LF Transverse impedance

Coil Measurement: Use coil instead of 2 wires

LCR Meter

$20 \ \mathrm{Hz}{<} f <\!\!2 \ \mathrm{MHz}$

 $\underline{Z}_{\perp} = \frac{c(\underline{Z}^{DUT} - \underline{Z}^{REF})}{(1 N^2 \Lambda^2)}$

Drawback: Upper frequency limit due to coil resonance @ approx. 1MHz

29 June 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Uwe Niedermayer | 24

lektromagnetischer Felder | Uwe Niedermayer | 24

Contents

- Motivation
- Definitions
- SIS100 impedance spectrum overview
- Numerical calculation
 →TD vs. FD
- Simplified numerical calculation
 - Method & results
- Full numerical simulation in FD
- Preliminary TD results
- Bench measurements
- Current status and outlook

Treatment of SIS100 components

Kickers

- FD simulation (with network)
- Simplified analytical models
 - Nassibian and Sacherer 1978
 - Tsutsui 2000
- LF and HF measurements
- Collimators
 - TD simulation for good conducting materials
 - FD simulation / measurements for poor conductors
- Beampipe: Done.

Proposed SC compensation insert

Longitudinal Space Charge is like a negative inductance

$$\underline{Z}_{\parallel}^{SC} = -i\omega \frac{\mu_0 g_0 l}{4\pi\beta^2 \gamma^2}$$

Causes potential well distortion / decrease of bucket-height

Can be compensated by positive Inductance

$$\underline{Z}_{\parallel}^{INSERT} \approx i\omega \frac{\mu}{2\pi} l \ln \frac{h}{b} , \quad f < 10 \text{ MHz} , \quad \beta > 0.3$$

- Implemented in PSR / Los Alamos using highly permeable material (Ferrite)
- Magnetization losses cause real part of impedance
 →Negative mass instability @ PSR (PhD Thesis C. Beltran, 2003)
- Impact on transverse impedance???

Analytical calculations for SC compensation insert

Sensitivity on material parameters

- Calculation of extremal cases
- Estimation of higher harmonics (nonlinear response)

TECHNISCHE

UNIVERSITÄT DARMSTADT

Conclusions (current status and outlook)

THE END

Thank you for your kind attention Thanks to all coworkers Any questions?

TECHNISCHE UNIVERSITÄT DARMSTADT

Numerical LF transverse impedance model for SIS18 and measurement

Wall current and shielding effectiveness

Transverse coasting beam instability in SIS18

TECHNISCHE

UNIVERSITÄT DARMSTADT

Source Fields

