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Introduction to lattice QCD

lattice QCD, 1974
non-pertubative, first-principles, numerical approach; all systematic
errors can be quantified

Particle Data Book on quark masses, 2001

”Eventually, lattice gauge theory methods will be accurate enough
to determine the light quark masses.”

Particle Data Book on quark masses, 2012

”The determination of quark masses using lattice simulations is
well established. With improved algorithms and access to more
powerful computing resources, the precision of the results has
improved immensely in recent years.”

ms = 95.5(1.1)(5.5) MeV

mud = 3.469(47)(48) MeV



Users guide to lattice QCD results

evaluation criteria

• • •
continuum limit one a two a’s

extrapolation
using three
or more a’s

physical mass
one non-phys. more non-phys.

phys. mass
mass masses

fermion type quenched staggered Wilson

finite V analysis one V two V ’s
extrapolation
using three
or more V ’s

(•) is not neccesarily bad, but uncertanity is not estimated



Order of the transition

phase transition occurs only in infinite volume ⇒ finite size scaling
look at the susceptibility of the Polyakov-line 1

V

(
〈L2〉 − 〈L〉2

)
in

the quenched theory for different volumes

first order transition
peak width ∝ 1/V, peak height ∝ V



Order of the transition

look at the chiral susceptibility 1
V

d2logZ
dm2 in the full (nf = 2 + 1)

theory for aspect ratios 3–6 (an order of magnitude change in the
volume)

cross-over or analytic transition

peak width ≈ constant, peak height ≈ constant



Order of the transition: crossover ••••
renormalized, continuum extrapolated chiral susceptibility

the result is consistent with an approximately constant behavior
for a factor of 5 difference within the volume range
finite size scaling analysis (•), continuum result(•), physical
quark masses(•) with staggered discretization(•)



Transition temperature •••

crossover transition
⇒ no single Tc , but 30-40 MeV broad region
⇒ different variables give different pseudocritical Tc ’s
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Equation of state •••

on the lattice we measure the dimensionless trace anomaly ε−3p
T 4

different lattice spacings are in good agreement, but continuum
limit is not yet done (•); physical mass (•); staggered quarks (•)



Equation of state •••
pressure, energy density, entropy, speed of sound are derived

“smaller than error” parametrization for T = 0...1000 MeV:

ε− 3p

T 4
= exp(−h1/t − h2/t

2) ·
(
h0 +

f0 · [1 + tanh(f1 + f2t)]

1 + g1t + g2t2

)∣∣∣∣
t=T/200MeV

h0 h1 h2 f0 f1 f2 g1 g2
0.1396 -0.1800 0.0350 2.76 6.79 -5.29 -0.47 1.04



Transition with Wilson •••, overlap •••

staggered discretization is theoretically unclean
non-staggered discretizations are very expensive

Wilson vs staggered: continuum

limit •, mπ= 545 MeV •
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overlap vs staggered: two lattice

spacings •, mπ=350 MeV •
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all numerical evidence until now supports the correctness of
staggered, continuum limit with smaller masses will follow



Summary of results

Zero density

transition is crossover • • • •
transition temperature(s) • • • -
equation of state • • • -
transition with Wilson fermions • • • -
transition with overlap fermions • • • -

cont. phys. ferm. fin. V



Finite chemical potential

sign problem

for non-vanishing µ’s exponentially large number of equally
important field configurations with oscillating contribution,
numerical algorithms (importance sampling) do not work

until 2001 lattice QCD could not say anything for µ > 0

techniques

I 2001: multiparameter reweighting [Fodor-Katz]

I 2002: Taylor expanding in µ [Bielefeld-Swansee]

I 2002: imaginary µ [de Forcrand-Philipsen, D’Elia-Lombardo]

I 2005: canonical partition functions [de Forcrand-Kratochvila]

they do not solve the sign problem, but make the small-moderate
µ region accesible
for small µ’s the Taylor-expansion is the least expensive



Curvature of the transition line

curvature is the leading order behaviour: κ = −Tc
dTc (µ)
dµ2

∣∣∣
µ=0

Does the crossover region shrink or expand?
Is there a critical endpoint?



Curvature of the transition line •••
leading order O(µ2) analysis for chiral condensate (Tc ∼ 150 MeV)

and strange number susceptibility (Tc ∼ 170 MeV)

the two curvatures are the same (κ = 0.008(2)), the widths do not
change with µ
transition does not get weaker nor stronger ⇒ critical point?



Equation of state for small µ •••

leading order expansion of pressure:

p(T , µ)

T 4
=

p(T )

T 4
+ c2(T )

µ2

T 2
+ . . .



Critical endpoint: multiparameter reweighting [Fodor-Katz,’01]

has to go beyond leading order in µ
reweighting: generate data at zero µ and add correction factor
(weight), which takes into account all orders in µ

Glasgow method

new method

β,T

µ
.

.

transition line

old method (Glasgow): single parameter (µ), purely hadronic ⇒
transition
multiparameter (new method): two parameters (µ and T ),
transition ⇒ transition



Endpoint from reweighting [Fodor-Katz,’04] ••••
first lattice QCD result at finite chemical potential

endpoint: TE = 162± 2 MeV, µE = 360± 40 MeV

phase transition only in infinite V ⇒ finite V analysis (•)
one lattice spacing (•), physical mass (•), staggered (•)



Endpoint from Taylor-expansion [Gavai-Gupta,’05] ••••
expansion of pressure at µ = 0 has a convergence radius, which is
smaller than the critical chemical potential

p(T , µ)

T 4
=
∞∑
n=0

cn(T )
( µ
T

)n
estimate convergence radius from the first few cn’s
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Endpoint from canonical approach [Li-Alexandru-Liu,’11] ••••
use canonical ensemble (C) instead of grand-canonical (GC)

ZGC(µ,T ) =
∑
B

ZC(B,T ) · exp(Bµ/T )

set number of baryons(B) and measure chemical potential (µ)

Maxwell construction
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Summary of results

Zero density

transition is crossover • • • •
transition temperature(s) • • • -
equation of state • • • -
transition with Wilson fermions • • • -
transition with overlap fermions • • • -

Finite density

curvature of transition line • • • -
equation of state to O(µ2) • • • -

critical endpoint reweighting • • • •
critical endpoint expansion • • • •
critical endpoint canonical • • • •

cont. phys. ferm. fin. V


