Neutron star masses and radii from X-ray bursts in low-mass X-ray binaries

Valery Suleimanov

Universität Tübingen, Germany Kazan Federal University, Russia

together with

Juri Poutanen University of Oulu, Finland Mikhail Revnivtsev

Space Research Institute, Russia Technische Universität Munchen, Germany

Klaus Werner

Universität Tübingen, Germany

Dense Baryonic Matter in the Cosmos and the Laboratory Tübingen, October, 11 2012

Neutron star structure

Main problem – inner core Equation of State (EoS)

Zoo of NS inner core EoS

Solution – M and R from observations!

X-ray bursting neutron stars

- X-ray bursting NSs LMXBs with thermonuclear explosions at the neutron star surface
- Sometimes close to the Eddington limit during the burst (photospheric radius expansion (PRE) bursts)
- Burst duration ~10 1000 sec

Ideal sources for NS masses and radii investigations (important for EOS!!!)

Low Mass X-ray Binary (artist veiw)

4U 1724-307 in Terzan 2

Figure from Molkov et al (2000)

Plane parallel model of the bursting layer

Emergent radiation

How emergent spectrum forms?

Due to Compton scattering the emergent spectrum close to the diluted blackbody.

$$F_{v} = \frac{1}{f_{c}^{4}} B_{v}(f_{c}T_{eff}), \quad f_{c} \approx 1.4 - 1.9$$

The apparent size of emitting area depends on the color correction factor f_c

$$R_{\infty} = R_{BB} f_c^2$$

Photons which we observe are emitted at the depth

$$\tau_{eff} = \sqrt{\tau_{ff} \tau_T} \approx 1$$
 - thermalization depth

At this depth, electron scattering optical depth $\tau_{\tau} >> 1$

s
$$k_{ff}(E) \propto E^{-3}$$
, $k_{ff} << \sigma_T$ at $E > 0.1 - 1 kT_e$

Atmosphere models of X-ray bursts accounting for Compton scattering

- Using Kompaneets equation: London et al. 1984, 1986; Lapidus et al. 1986; Ebisuzaki 1987; Pavlov et al. 1991, Suleimanov et al. 2006, 2011
- Using approximate Compton redistribution function (Guilbert 1981): Madej 1991; Madej et al. 2004; Majczyna et al. 2005
- Using exact relativistic Compton redistribution function (Suleimanov et al. 2012)

Basic equations

Hydrostatic equilibrium

$$\frac{1}{\rho} \frac{dP_{gas}}{dr} = -\frac{GM_{NS}}{R_{NS}^2 (1 - R_g / R_{NS})^{1/2}} + \frac{4\pi}{c} \int H_v (k_{ff} + \sigma_e) \, dv$$

Radiation transfer

Kompaneets operator

$$\frac{\partial^2 (f_v J_v)}{\partial \tau_v^2} = \frac{k_{ff}}{k_{ff} + \sigma_e} (J_v - B_v) \left[-\frac{\sigma_e}{k_{ff} + \sigma_e} \frac{kT}{m_e c^2} x \frac{\partial}{\partial x} (\frac{\partial J_v}{\partial x} - 3J_v + \frac{T_{eff}}{T} x J_v (1 + C \frac{J_v}{x^3})) \right]$$

$$x = \frac{hv}{kT_{eff}} \quad C = c^2 h^2 / 2(kT_{eff})^3$$
Compton scattering

Radiative equilibrium

$$\int k_{ff} (J_{\nu} - B_{\nu}) dx \left[-\sigma_e \frac{kT}{m_e c^2} \int (4J_{\nu} - \frac{T_{eff}}{T} x J_{\nu} (1 + \frac{CJ_{\nu}}{x^3})) dx \right] = 0$$

 k_{ff} - true absorption opacity (mainly free-free transitions)

 σ_{e} - Thomson electron scattering opacity

Accurate treatment using exact relativistic redistribution function for Compton scattering

Radiation transfer equation (RTE)

$$\mu \frac{dI(x,\mu)}{d\tau_x} = I(x,\mu) - S(x,\mu), \qquad d\tau_x = -(\sigma(x,\mu) + k(x))\rho(z) dz$$

Electron scattering opacity

$$\sigma(x,\mu) = \frac{\sigma_{\rm e}}{x} \int_0^\infty x_1 \, dx_1 \, \int_{-1}^1 d\mu_1 \, R(x,\mu,x_1,\mu_1) \, \exp\left(-\frac{x_1-x}{\Theta(z)}\right) \left(1 + \frac{C \, I(x_1,\mu_1)}{x_1^3}\right)$$

$$\sigma_{\rm e} = \sigma_{\rm T} \frac{n_{\rm e}}{\rho}, \quad C = \frac{h^2}{2m_{\rm e}^3 c^4} \qquad \sigma_{\rm T} = 6.65 \cdot 10^{-25} \,{\rm cm}^2$$

Source function

$$\tau_{e} = \sigma_{T} \frac{n_{e}}{\rho}, \quad C = \frac{h^{2}}{2m_{e}^{3}c^{4}} \quad \sigma_{T} = 6.65 \cdot 10^{-25} \text{ cm}^{2} \qquad x_{1} = \frac{hv_{1}}{m_{e}c^{2}}, \quad x = \frac{hv}{m_{e}c^{2}},$$
Source function
$$S(x,\mu) = \frac{k(x)}{\sigma(x,\mu) + k(x)}B(x) + \qquad \Theta(z) = \frac{kT(z)}{m_{e}c^{2}}$$

$$\frac{x^{2}}{\sigma(x,\mu) + k(x)} \left(1 + \frac{CI(x,\mu)}{x^{3}}\right) \int_{0}^{\infty} \frac{dx_{1}}{x_{1}^{2}} \int_{-1}^{1} d\mu_{1}R(x,\mu,x_{1},\mu_{1})I(x_{1},\mu_{1}),$$

Redistribution function (RF)

$$R(x, x_1, \mu, \mu_1) = \int_0^{2\pi} R(x, x_1, \eta) \, d\varphi, \qquad \eta = \mu \mu_1 + \sqrt{1 - \mu^2} \sqrt{1 - \mu_1^2} \cos \varphi$$

Model atmosphere calculations

(Suleimanov, Poutanen, Werner 2011, A&A 527, A139 / 2012, A&A, 545, A120)

- 6 chemical compositions: H, He, solar H/He with $Z = 1, 0.3, 0.1, 0.01 Z_{sun}$

- **3** surface gravities: *log g* = 14.0, 14.3 and 14.6

- 28 relative luminosities $I = L / L_{edd}$ from 0.001 to 1.1 (super-Eddington luminosities for Thomson cross-section)

Dashed lines – Kompaneets approximation

Solid lines – exact Compton scattering kernel

New set of atmosphere models. Radiative acceleration.

Dashed curves – Paczynski's (1983) approximation for averaged opacity

$$\sigma_e(T) \approx \sigma_e \left(1 + \left(\frac{T}{4.5 \times 10^8 K} \right)^{0.86} \right)^{-1}$$

Slightly improved approximation gives better result

$$\sigma_e(T) \approx \sigma_e \left(1 + \left(\frac{T}{4.5 \times 10^8 K} \right)^{0.98} \right)^{-1}$$

Used approximation

$$g_{rad} = \sigma_e(T) \, \frac{\sigma_{SB} T_{eff}^4}{c}$$

Color correction f_c calculations

Calculated spectra are redshifted and fitted by diluted blackbody (oneand two-parameters functions) (assuming $M = 1.4 M_{sun}$) in the *PCA/RXTE* energy band (3-20) keV $F_E = wB_E(f_c T_{eff})$

Minimizing deviations in photon number flux

$$\sum_{n=1}^{N} \frac{(F_{E_n} - w_2 B_{E_n}(f_{c,2}T_{\text{eff}}))^2}{E_n^2}$$

Color correction $f_{\rm c}$ calculations

Dashed lines – Kompaneets approximation

differences are small at $L/L_{edd} < 0.8$

Solid lines – exact Compton scattering kernel

Basic relations

 $F_{obs}(Edd) = \frac{L_{Edd}}{d^2(1+z)^2}$ observed flux, which corresponds to Eddington luminosity

$$F_{obs} = \sigma T_{BB}^4 \frac{R_{BB}^2}{d^2} = \sigma T_{BB}^4 K$$
 observed flux with fitting parameters

 $F_E \approx \frac{1}{f_c^4} B_E(f_c T_{eff})$ observed spectrum is close to the diluted blackbody color correction (hardness) factor

from
$$L_{obs} = L_{BB}$$
 \longrightarrow $R_{BB} = \frac{R}{f_c^2}(1+z)$

Cooling tail method

•The observed evolution of $K^{-1/4}$ vs. F should look similar to the theoretical relation f_c vs. F/F_{Edd}

$$K = \left(\frac{R_{bb}}{D_{10}}\right)^2 = \frac{1}{f_c^4} \left(\frac{R_\infty}{D_{10}}\right)^2 \longrightarrow K^{-1/4} = A f_c (F / F_{Edd})$$
$$D_{10} = d/10 \, kpc \qquad \qquad A = (R_\infty [\text{km}]/D_{10})^{-1/2}$$

•From the fits a more reliable estimate of the Eddington flux and apparent radius can be obtained.

and we use now our theoretical dependences

 $f_{\rm c}$ vs. $F/F_{\rm Edd}$

to find two fitting parameters: A and F_{Edd}

Cooling tail method

Three curves on *M-R* plane

Cooling tails of PRE bursts from 4U 1724-307

- Crosses: Long, >150 sec, PRE burst during hard/low state on Nov 8, 1996.
- Diamonds: two short PRE bursts on Feb 23 and May 22, 2004 during soft state.
- Spectral evolution is spectacularly different!

M-R relation - 4U 1724-307

•From the best-fit A and F_{Edd} , we can get constraints on Mand R if we assume some distance distribution (we take flat in 5.3-7.7 kpc with gaussian tails).

- •1. Radius > 13.5 km at 90% confidence for any solar composition for M<2.3 solar.
- •2. Hydrogen-rich atmosphere is preferred.
- •3. Stiff EoS is preferred.

Contours are elongated along T_{Edd} =const track

$$T_{\rm Edd,\infty} = \left(\frac{gc}{\sigma_{\rm SB}\kappa_{\rm e}}\right)^{1/4} \frac{1}{1+z} = 6.4 \times 10^9 \, A \, F_{\rm Edd}^{1/4} \, {\rm K}$$

Cooling tails of PRE bursts from 4U 1608-52

Bursts in hard persistent states are taken

Poutanen et al. 2012 (in preparation)

M-R relation - 4U 1608-52

Results are similar to 4U 1724-307

Poutanen et al. 2012 (in preparation)

Conclusions

- 1. An extended set of accurate model atmospheres for X-ray bursts covering large range of luminosities, various log g and chemical composition is computed.
- 2. Evolution of blackbody normalization with flux $K^{-1/4}$ vs. F in "hard state" bursts is well described by the theory. "Soft state" PRE bursts from 4U1724-307 and 4U1608-52 do not show the evolution of $K^{-1/4}$ vs. F predicted for a passively cooling neutron star, therefore they should not be used for M/R determination.
- 3. Burst properties depend on persistent flux. Optically thick accretion disk blocks nearly 1/2 of the star and possibly affects the short burst (soft state) spectra. In the hard state bursts, accretion is not important (optically thin).
- 4. Neutron star radii are constrained at R>13.5 km favoring stiff equation of state (consistent with existence of the 2M_☉ pulsar).

Integration over NS surface

