
The structure and cooling of massive compact stars

Armen Sedrakian

in collaboration with
L. Bonanno, G. Colucci, D. Hess, X.-G. Huang, D. Rischke,

M. Sinha

Institute for Theoretical Physics,
J. W. Goethe University, Frankfurt Main, Germany

EMMI Workshop “Dense baryonic matter in the cosmos and the
laboratory”

Munich, Oktober 9, 2012



Introduction and motivation

Outline

Recent experimental motivation

Description of dense bulk nuclear matter at and above the saturation density

Ground state properties vs neutron star observations (Demorest pulsar)

Superfluidity, excitations, and response functions

CAS A: a cooling quark star?



Introduction and motivation

A two-solar-mass neutron star measured

The largest pulsating star yet observed casts doubts on exotic matter theories

The binary millisecond pulsar J1614-223010+11 Shapiro delay signature:

∆t = −
2GM

c3
log(1− ~R · ~R′). (1)

The pulsars mass 1.97± 0.04 solar masses which rules out almost all currently proposed hyperon or boson condensate
equations of state. (Demorest et al, 2010, Nature 467, 1081)



Introduction and motivation

Cas A remnant, cooling in course

This extraordinarily deep Chandra image shows Cassiopeia A (Cas A, for short), the youngest
supernova remnant in the Milky Way.

NASA’s Chandra X-ray Observatory has discovered the first direct evidence for a superfluid. (Conclusions drawn from cooling
simulations of the neutron stars).



Stellar configurations

I. Dense Matter Equation of State and Neutron Stars



Stellar configurations

Relativistic covariant Lagrangians for hadronic and quark phases

Boguta-Bodmer-Walecka Lagrangian for effective fields:

LB =
∑

B

ψ̄B[γµ(i∂µ − gωBωµ −
1
2

gρBτ · ρµ)− (mB − gσBσ)]ψB +
1
2
∂µσ∂µσ

−
1
2

m2
σσ

2 +
1
2

m2
ωω

µωµ −
1
4
ρµν · ρµν +

1
2

m2
ρρ
µ · ρµ

−
1
3

bmN(gσNσ)3 −
1
4

c(gσNσ)4 +
∑

e−,µ−

ψ̄λ(iγµ∂µ − mλ)ψλ −
1
4

FµνFµν ,

The model is viewed as a Density Functional Theory

B-sum is over the baryonic octet B ≡ p, n,Λ,Σ±,0,Ξ−,0

N-meson sector gσN/mσ = 3.967 gωN/mω = 3.244 gρN/mρ = 1.157 fm

H-meson couplings weaker by factors 0.6, 0.658, 0.6.

GM3 parametrization, Glendenning & Moszkowski 1991, PRL, 67, 2414



Stellar configurations

Quark phases

Nambu-Jona-Lasinio Lagrangian:

LQ = ψ̄(iγµ∂µ − m̂)ψ + GV(ψ̄iγ0ψ)2 + GS

8∑
a=0

[(ψ̄λaψ)2 + (ψ̄iγ5λaψ)2]

+ GD
∑
γ,c

[ψ̄a
αiγ5ε

αβγεabc(ψC)b
β ][(ψ̄C)r

ρiγ5ε
ρσγεrscψ

8
σ ]

− K
{

detf [ψ̄(1 + γ5)ψ] + detf [ψ̄(1− γ5)ψ]
}
, (2)

quark spinor fields ψa
α, color a = r, g, b, flavor (α = u, d, s) indices, mass matrix

m̂ = diagf (mu,md,ms), λa a = 1, ..., 8 Gell-Mann matrices. Charge conjugated ψC = Cψ̄T

and ψ̄C = ψT C C = iγ2γ0.

a sum is over the 8 gluons

GS is the scalar coupling fixed from vacuum physics; GD is the scalar coupling, which is
related to the GS via Fierz transformation

GD is treated as a free parameter



Stellar configurations

Quark phases

Pairing patterns: Order parameter

∆ ∝ 〈0|ψa
ασψ

b
βτ |0〉

Antisymmetry in spin σ, τ for the BCS mechanism to work
Antisymmetry in color a, b for attraction
Antisymmetry in flavor to avoid Pauli blocking

At low densities 2SC phase (Bailin and Love ’84)

∆ ∝= ∆0ε
ab3εαβ

But most likely with broken spatial symmetries due to beta-equilibrium ! (see later)

At high densities we expect 3 flavors of u, d, s massless quarks. The ground state is the
color-flavor-locked phase (Alford, Rajagopal, Wilczek ’99)

∆ ∝ 〈0|ψa
αLψ

b
βL|0〉 = −〈0|ψa

αRψ
b
βR|0〉 = ∆εabC∆εαβC

The partition function is evaluated in the mean field approximation.



Stellar configurations

EoS with equilibrium among nuclear, hyperonic, 2SC- and CFL-quark phases
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Stellar configurations

Mass vs Radius relationship
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Stellar configurations

Composition: multilayer stars with quark, hyperonic, nuclear matters
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Stellar configurations

Equation of state conclusions

To produce heavy and exotics featuring neutron stars it is sufficient a stiff NM equation
state above saturation.

Furthermore, we need vector interactions to stabilize color superconducting quark star.

A 2M� mass star does not exclude exotic matter in the cores of NS

Others possibilities modifications in the hyperonic sector (repulsive vector interactions)

Modification of the gravity is also a possibility

improvements in the range 0.5 ≤ ρ/ρ0 ≤ 2 should be possible with the use of
microscopically motivated models

Quark matter EoS can be constrained at high densities by perturbative QCD results

more detailes: L. Bonanno, A. Sedrakian, Astron. and Astrophys. vol. 539, A16 (2012).



Cooling

II. Cooling of neutron stars



Cooling

Cooling of compact stars
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Cooling

Energy balance equation (Thorne ’77)

d
dr

(
Le2Φ

)
=

−4πr2√
1− 2Gm

rc2

neΦT
ds
dt
. (3)

L is the total luminosity (neutrino + photon) The gradients of neutrino luminosity

d
dr

(
Lνe2Φ

)
=

4πr2√
1− 2Gm

rc2

ne2Φqν ,
d
dr

(
TeΦ
)

=
−3κρ
16σT3

LγeΦ

4πr2
√

1− 2Gm
rc2

(4)

In isothermal core approximation T′ = TeΦ = const.

dT′

dt
= −

Rc∫
0

nqν(r, T)e2ΦdVp + 4πσR2T4
S e2Φc

Rc∫
0

ncv(r, T)dVp

. (5)



Cooling

Key processes

Modified Urca process

n + n → n + p + e + ν̄,

Crust bremsstrahlung

e + (A,Z) → e + (A,Z) + ν + ν̄,

Pair-breaking processes

[NN] → [NN] + ν + ν̄.

Photo-emission from the surface

Lγ = 4πσR2T4



III. Non-standard (exotic) cooling of neutron stars



Cooling processes in quark matter

Quark cores of NS emit neutrons via: d → u + e + ν̄e u + e→ d + νe. The rate of the process
is The neutrino emissivity is expressed in terms of the polarization tensor of baryonic matter

ενν̄ = −2
(

GF

2
√

2

)2 ∫
d4qg(ω)ω

∑
i=1,2

∫
d3qi

(2π)32ωi
=[Lµλ(qi) Πµλ(q)]δ(4)(q−

∑
i

qi),

The response function at one loop

Πµλ(q) = −i
∫

d4p
(2π)4

Tr [(Γ−)µS(p)(Γ+)λS(p + q)] , Γ±(q) = γµ(1− γ5)⊗ τ±

with propagators

Sf=u,d = iδab
Λ+(p)

p2
0 − ε2

p
(p/− µf γ0), F(p) = −iεab3εfg∆

Λ+(p)

p2
0 − ε2

p
γ5C
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Gapless vs gapped emissivities (P. Jaikumar, C. Roberts, A. Sedrakian, Phys. Rev. C73:
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Here ζ = ∆/δµ, where δµ = µd − µu = µe.

One loop calculations may not be enough!



Computing the PB emissivity

The vector conservation in baryonic matter is recovered only when full re-summation of
polarization tensors is carried out!

In the case of one loop EFT in powers of vF/c (Leinson-Perez ’06, Sedrakian-Müther-Schuck
’07, Kolomeitsev-Voskresensky ’08)

εV ∝ O(1), εV ∝ v4
F.

To describe a superfluid we need the propagators

Gσ,σ′ (iωn, p) =

(
Ĝσσ′ (iωn, p) F̂σσ′ (iωn, p)

F̂+
σσ′ (iωn, p) Ĝ+

σσ′ (iωn, p)

)
.

which in the momentum space is given by

Ĝσσ′ (iωn, p) = δσσ′

(
u2

p

iωn − εp
+

v2
p

iωn + εp

)
,

F̂σσ′ (iωn, p) = −iσyupvp

(
1

iωn − εp
−

1
iωn + εp

)
,



Vertex functions
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Figure: A diagrammatic representation of the coupled integral equations for the effective
weak vertices in superfluid baryonic matter. The “normal” propagators for particles (holes) are
shown by single-arrowed lines directed from left to right (right to left). The double arrowed
lines correspond to the “anomalous” propagators F (two incoming arrows) and F+ (two
outgoing arrows). The “normal” vertices Γ1 and Γ4 are shown by full and empty triangles. The
“anomalous” vertices Γ2 and Γ3 are shown by hatched and shaded triangles. The horizontal
wavy lines represent the low-energy propagator of Z0 gauge boson. The vertical wavy lines
stand for the particle-particle interaction vpp, dashed lines - for particle-hole interaction vph.



Polarization tensor and emissivity
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Figure: The sum of polarization tensors contributing to the vector-current neutrino emission
rate. Note that the diagrams b, c, and d are specific to the superfluid systems and vanish in the
unpaired state.

The result can be cast as

εV =
G2c2

V Nf

48π4

∫ ∞
0

dωg(ω)ωJ(ω),

where cV = 1 for neutrons and cV = 0.08 for protons, Nf = 3 is the number of neutrino flavors
in the Standard Model, and

JV(ω) =

∫ ω

0
dqq2(q2 − ω2)Im [Π00(ω, q)−Πii(ω, q)]

= −
8ω5ν(0)v4

F

405
Im(F ∗ F+)0[1 + γv2

F],



Vector current emissivity

The vector current emissivity is given by (z = ∆/T)

εV =
16G2c2

Vν(0)v4
F

1215π3
JV(z)T7, JV(z) = z7

∫ ∞
1

dy y5√
y2 − 1

f (zy)2
[

1 +

(
7

33
+

41
77
γ

)
v2

F

]
.

Dependence of the integral on reduced temperature T/Tc (Upper panel). Higher order
corrections to the leading order result (’12)
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Axial current emissivity

�Z0 Z0 �Z0 Z0

Figure: The two diagrams contributing to the polarization tensor of baryonic matter, which
defines the axial vector emissivity. The “normal” baryon propagators for particles (holes) are
shown by single-arrowed lines directed from left to right (right to left). The double arrowed
lines correspond to the “anomalous” propagators F (two incoming arrows) and F+ (two
outgoing arrows).

The emissivity of this processes is given by

εA =
4G2

Fg2
A

15π3
ζAν(0)vF

2T7JA, JA = z7
∫ ∞

1
dy

y5√
y2 − 1

fF (zy)2 . (6)

Note the v2
F scaling of the axial neutrino emissivity compared to the v4

F scaling.

Conclusion: Axial neutrino emissivity dominates the vector current emissivity because of

v2 scaling instead of v4 scaling. (Opposite to the conclusion found in the classical paper by

Flowers, Ruderman and Sutherland ’76)



Axial current emissivity

�Z0 Z0 �Z0 Z0

Figure: The two diagrams contributing to the polarization tensor of baryonic matter, which
defines the axial vector emissivity. The “normal” baryon propagators for particles (holes) are
shown by single-arrowed lines directed from left to right (right to left). The double arrowed
lines correspond to the “anomalous” propagators F (two incoming arrows) and F+ (two
outgoing arrows).

The emissivity of this processes is given by

εν =
4G2

Fg2
A

15π3
ζAν(0)vF

2T7Iν , Iν = z7
∫ ∞

1
dy

y5√
y2 − 1

fF (zy)2 . (7)

Note the v2
F scaling of the axial neutrino emissivity compared to the v4

F scaling.

Conclusion: Axial neutrino emissivity dominates the vector current emissivity because of

v2 scaling instead of v4 scaling.



Temperature evolution
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Cooling simulation of stars with quark matter cores, (D. Hess, A. Sedrakian, Phys. Rev. D 84,

063015 (2011))



Temperature evolution
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Compact star path on the phase diagram
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CAS A: a cooling quark star?

Red-green quarks in the 2SC phase may or may not be fast cooling agents depending on
the gaplessness parameter.
The blue quarks act as a BCS superconductor and can contribute to fast cooling if their
gaps are small, inversely, can be ineffective in cooling if their gaps are large.
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Conclusions

There is little doubt that
there is enough room for massive compact stars to harbor some sort of exotic matter.
In our models the central densities reach 10 ×ρ0.

Mechanisms of accommodating exotic matter in compact stars require more repulsion in
the quark and also in the hyper-nuclear sectors (reasonable so far!)

Cooling simulations being sensitive to the composition of matter can be used to identify
phase transitions to superfluid states (e.g. in color superconducting quark matter).
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