The symmetry energy at high density: experimental probes

W. Trautmann GSI Helmholtzzentrum, Darmstadt, Germany

- The present consensus that a soft EoS including momentum dependent interactions best describes the high-density behavior of symmetric nuclear matter is based on studies of **flow and kaon** production within the framework of transport theory.
- The **elliptic flow** in collisions of neutron-rich heavy-ion systems at intermediate energies emerges as an observable sensitive to the strength of the symmetry energy at supra-saturation densities.

EMMI workshop

Dense Baryonic Matter in the Cosmos and the Laboratory

Tübingen, October 11/12, 2012

symmetric matter

KAOS data K⁺ ratios Au+Au vs. C+C normalized to <A_{part}> ...

1 A GeV Au+Au

flow data rule out repulsive and super-soft EoS

... favor soft EoS

Danielewicz et al., Science 298 (2002)

Sturm et al., Fuchs et al., PRL 86 (2001)

symmetric matter

FOPI data 1 A GeV Au+Au

deuteron yields and flows

IQMD model calculations favor soft EoS

source: Reisdorf, AsyEos Siracusa (2012)

the symmetry energy

why so uncertain at high density?

related to uncertainty of three-body and tensor forces at high density

normal nuclear density

the symmetry energy

the symmetry energy

force developed by Das, Das Gupta, Gale, and Bao-An Li, Phys. Rev. C 67 (2003) 034611.

with explicit momentum dependence in the isovector part

differential flow in heavy-ion collisions

minimizes role of isoscalar part of the EoS see Bao-An Li PRL (2000) and subsequent work

differential: neutrons vs. protons t vs. ³He, ⁷Li vs ⁷Be, ...

UrQMD: significant sensitivity predicted for differential elliptic flow (Qingfeng Li and Paolo Russotto)

reanalysis of FOPI-LAND data: $\gamma_{pot} = 0.9 \pm 0.4$

Russotto, Wu, Zoric, Chartier, Leifels, Lemmon, Li, Lukasik, Pagano, Pawlowski, Trautmann, PLB 697 (2011) 471 Trautmann & Wolter, IJMPE 21 (2012) 1230003

results from FOPI/LAND experiment

reanalysis of Au+Au 400 A MeV data

acceptance in p_t vs. rapidity

neutron squeeze-out: Y. Leifels et al., PRL 71, 963 (1993)

main yield here

neutron/hydrogen FP1: $\gamma = 1.01 \pm 0.21$ FP2: $\gamma = 0.98 \pm 0.35$ **neutron/proton** FP1: $\gamma = 0.99 \pm 0.28$ FP2: $\gamma = 0.85 \pm 0.47$ **adopted:** $\gamma = 0.9 \pm 0.4$

results from FOPI/LAND experiment

parameters in UrQMD

parameterizations in UrQMD

Qingfeng Li et al., PRC 83 (2011)

w/o momentum dep.

new: result obtained with Tübingen QMD*)

M.D. Cozma, PLB 700, 139 (2011); arXiv:1102.2728

difference of neutron and proton squeeze-outs Au + Au @ 400 A MeV

- with FOPI filter
- bands show uncertainty due to isoscalar field "soft to hard"

conclusion in paper: super-soft not compatible with FOPI-LAND data

tested in UrQMD: momentum dep. of isoscalar field momentum dep. of NNECS

tested in T-QMD: density dep. of NNECS asymmetry dep. of NNECS soft vs. hard EoS width of wave packets

*) V.S. Uma Maheswari, C. Fuchs, Amand Faessler, L. Sehn, D.S. Kosov, Z. Wang, NPA 628 (1998)

isotopic particle (double) ratios

FOPI data

HIC scenario:

fast neutron emission (mean field effect), transformation of neutron into proton in inelastic channels, and NN>N Δ threshold effects (no-chemical equilibrium)

Ferini et al. (RMF)stiffer for ratio upXiao et al. (IBUU)softerFeng & Jin (ImIQMD)stiffer

consequence: extremely stiff (soft) solutions

inconsistent results from pion ratios

analysis of π^-/π^+ ratios in Au+Au at 400 A MeV FOPI data, Reisdorf et al., NPA (2007)

analysis of π^-/π^+ ratios in Au+Au

Zhigang Xiao et al. PRL 102, 062502 (2009) FOPI data of Reisdorf et al.

normalized π multiplicity

outlook

- L \approx 60 MeV ($\gamma \approx$ 0.6) from nuclear structure and reactions probing densities of \approx 2/3 ρ_0 ; **big expectations** on PREXII
- increasingly more precise data from **neutron-star** observations, typically L ≈ 40 MeV
- high-densities probed in reactions at SIS energies; analysis of ASY-EOS experiment in progress!
- kaon and pion ratios interesting probes but results presently inconclusive: **new activity** at RIKEN (Samurai) and MSU; analysis of HADES kaon data for Ar+KCl and Au+Au
- remarkable progress in theory (3N force in ChEFT)

SAMURAI dipole magnet at RIKEN

TPC project for SAMURAI Tsang, Isobe, McIntosh, Murakami et al.

Superconducting Analyzer for MUlti-particle from RAdio Isotope Beam with 7Tm of bending power

Piotr Pawłowski

The Asy-Eos Collaboration

authors of proposal 2009

Co-Spokespersons: R.C. Lemmon¹ and P. Russotto²

Collaboration

F. Amorini², A. Anzalone¹⁷, T. Aumann³, V. Avdeichikov¹², V. Baran²³, Z. Basrak⁴, J. Benlliure¹³, I. Berceanu¹¹, A. Bickley¹⁴, E. Bonnet⁶, K. Boretzky³, R. Bougault³⁰, J. Brzychczyk⁸, B. Bubak²², G. Cardella⁷, S. Cavallaro², J. Cederkall¹², M. Chartier⁵, M.B. Chatterjee¹⁶, A. Chbihi⁶, M. Colonna¹⁷, D. Cozma¹¹, B. Czech¹⁰, E. De Filippo⁷, K. Fissum¹², D. Di Julio¹², M. Di Toro², M. Famiano²⁷, J.D. Frankland⁶, E. Galichet¹⁸, I. Gasparic⁴, E. Geraci¹⁵, V. Giordano², P. Golubev¹², L. Grassi¹⁵, A. Grzeszczuk²², P. Guazzoni²¹, M. Heil³, J. Helgesson³¹, L. Isaksson¹², B. Jacobsson¹², A. Kelic³, M. Kis⁴, S. Kowalski²², E. La Guidara²⁰, G. Lanzalone²⁹, N. Le Neindre³⁰, Y. Leifels³, Q. Li⁹, I. Lombardo², O. Lopez³⁰, J. Lukasik¹⁰, W. Lynch¹⁴, P. Napolitani³⁰, N.G. Nicolis²⁴, A. Pagano⁷, M. Papa⁷, M. Parlog³⁰, P. Pawlowski¹⁰, M. Petrovici¹¹, S. Pirrone⁷, G. Politi¹⁵, A. Pop¹¹, F. Porto², R. Reifarth³, W. Reisdorf³, E. Rosato¹⁹, M.V. Ricciardi³, F. Rizzo², W.U. Schroder²⁸, H. Simon³, K. Siwek-Wilczynska²⁶, I. Skwira-Chalot²⁶, I. Skwirczynska¹⁰, W. Trautmann³, M.B. Tsang¹⁴, G. Verde⁷, E. Vient³⁰, M. Vigilante¹⁹, J.P. Wieleczko⁶, J. Wilczynski²⁵, P.Z. Wu⁵, L.Zetta²¹, W. Zipper²²

vertical lines: analyses with ImQMD (Zhang et al.) and IBUU04 (Li and Chen)