Determination of the Symmetry Energy

Pawel Danielewicz¹ and Jenny Lee²

¹Natl Superconducting Cyclotron Lab, USA

²RIKEN, Japan

Dense Baryonic Matter in the Cosmos and the Laboratory Tübingen, October 11-12, 2012

≣ ► ≣।च २०२० Danielewicz & Lee

▶ < Ξ

Skyrme-Hartree-Fock

1-Slide Summary

Symmetry Energy for Finite Nuclei & for Uniform Matter

Skyrme-Hartree-Fock

Equation of State

Symmetry Energy

≣ ► ≣।च ७९० Danielewicz & Lee

▶ < Ξ >

Skyrme-Hartree-Fock

Equation of State

Energy in Uniform Matter

Nuclear Masses

Mass formula

$$E = E_{\text{nucl}} + E_{\text{Coul}} = E_0 + \frac{E_1}{E_1} + E_{\text{mic}} + E_{\text{Coul}}$$

Bulk contribution to the energy of a symmetric nucleus: $\frac{12}{3}$

$$E_0(A) = -a_V A + a_S A^{2/3} + \dots$$

Symmetry energy:

$$E_1(N,Z) = a_a(A) \frac{(N-Z)^2}{A} = 4a_a(A) \frac{T_z^2}{A}$$

Isospin invariance (charge invariance):

$$E_1 = 4a_a \frac{T_z^2}{A} \longrightarrow 4a_a \frac{T^2}{A} = 4a_a \frac{T_\perp^2 + T_z^2}{A} = 4a_a \frac{T(T+1)}{A}$$

e.g. Jänecke *et al.*, NPA728(03)23 ?? *a_a*(*A*) from states that differ in *T* within one nucleus

Nuclear Masses

Mass formula

$$E = E_{\text{nucl}} + E_{\text{Coul}} = E_0 + \frac{E_1}{E_1} + E_{\text{mic}} + E_{\text{Coul}}$$

Bulk contribution to the energy of a symmetric nucleus: $\frac{1}{2}$

$$E_0(A) = -a_V A + a_S A^{2/3} + \dots$$

Symmetry energy:

$$E_1(N,Z) = a_a(A) \frac{(N-Z)^2}{A} = 4a_a(A) \frac{T_z^2}{A}$$

Isospin invariance (charge invariance):

$$E_1 = 4a_a \frac{T_z^2}{A} \longrightarrow 4a_a \frac{T^2}{A} = 4a_a \frac{T_\perp^2 + T_z^2}{A} = 4a_a \frac{T(T+1)}{A}$$

e.g. Jänecke *et al.*, NPA728(03)23 ?? $a_a(A)$ from states that differ in *T* within one nucleus

Symmetry Coefficient Nucleus-by-Nucleus Mass formula generalized to the lowest state of a given *T*: $E(A, T, T_z) = E_0(A) + 4a_a(A) \frac{T(T+1)}{A} + E_{mic} + E_{Coul}$ In the ground state *T* takes on the lowest possible value $T = |T_z| = |N - Z|/2$. Through '+1' most of the Wigner term absorbed.

?Lowest state of a given *T*: isobaric analogue state (IAS) of some neighboring nucleus ground-state.

Peek into IAS Analysis IAS data: Antony *et al.* ADNDT66(97)1

Shell corrections: Koura *et al.* ProTheoPhys113(05)305

Peek into IAS Analysis IAS data: Antony *et al.* ADNDT66(97)1

Shell corrections: Koura *et al.* ProTheoPhys113(05)305

$a_a(A)$ without Shell Corrections

analogous to that for E_1 . ??Fundamental knowledge??

$a_a(A)$ with Shell Corrections

Symmetry coefficients on a nucleus-by-nucleus basis

Sensitivity to Shell Corrections

$a_a(A)$ from Skyrme-Hatree-Fock Calculations

We employ codes by P.-G. Reinhard, assuming spherical symmetry

Similar behavior with *A* as for IAS

▶ < Ξ

$a_a(A)$ from Different Skyrmes

Less impact of the slope *L* at ρ_0 than expected

??Difficulty for *L* determination??

▶ < Ξ

Test of Large-A Expansion Symbols: results of spherical no-Coulomb SHF calcs

 \Rightarrow Lines: volume-surface decomposition - expectation vs fit

→Symmetric matter energy f/sample Skyrmes \sim Works

→Symmetry coefficient

 \sim Not. . .

Expectations from half- ∞ matter.

Can $S(\rho)$ Be Constrained??!

Constraints on Symmetry Energy $S(\rho)$

Demand that Skyrme approximates IAS results at A > 30 produces a constraint area for $S(\rho)$:

- Symmetry-energy term weakens as nuclear mass number decreases: from a_a ~ 23 Mev to a_a ~ 9 MeV for A ≤ 8.
- For $A \gtrsim 25$, $a_a(A)$ may be fitted with $a_a^{-1} = (a_a^V)^{-1} + (a_a^S)^{-1} A^{-1/3}$, where $a_a^V \approx 35$ MeV and $a_a^S \approx 10$ MeV.
- Weakening of the symmetry term can be tied to the weakening of S(ρ) in uniform matter, with the fall of ρ.
- In spite of difficulties, significant, ±(1-2) MeV, constraints on S(ρ) at densities ρ =(0.05-0.13) fm⁻³.
- Forthcoming: charge radii, skins, $S(\rho \sim \rho_0)$ ©.

- Symmetry-energy term weakens as nuclear mass number decreases: from a_a ~ 23 Mev to a_a ~ 9 MeV for A ≤ 8.
- For $A \gtrsim 25$, $a_a(A)$ may be fitted with $a_a^{-1} = (a_a^V)^{-1} + (a_a^S)^{-1} A^{-1/3}$, where $a_a^V \approx 35 \text{ MeV}$ and $a_a^S \approx 10 \text{ MeV}$.
- Weakening of the symmetry term can be tied to the weakening of S(ρ) in uniform matter, with the fall of ρ.
- In spite of difficulties, significant, ±(1-2) MeV, constraints on S(ρ) at densities ρ =(0.05-0.13) fm⁻³.
- Forthcoming: charge radii, skins, $S(\rho \sim \rho_0)$ ©.

- Symmetry-energy term weakens as nuclear mass number decreases: from a_a ~ 23 Mev to a_a ~ 9 MeV for A ≤ 8.
- For $A \gtrsim 25$, $a_a(A)$ may be fitted with $a_a^{-1} = (a_a^V)^{-1} + (a_a^S)^{-1} A^{-1/3}$, where $a_a^V \approx 35 \text{ MeV}$ and $a_a^S \approx 10 \text{ MeV}$.
- Weakening of the symmetry term can be tied to the weakening of S(ρ) in uniform matter, with the fall of ρ.
- In spite of difficulties, significant, ±(1-2) MeV, constraints on S(ρ) at densities ρ =(0.05-0.13) fm⁻³.
- Forthcoming: charge radii, skins, $S(\rho \sim \rho_0)$ ©.

- Symmetry-energy term weakens as nuclear mass number decreases: from a_a ~ 23 Mev to a_a ~ 9 MeV for A ≤ 8.
- For $A \gtrsim 25$, $a_a(A)$ may be fitted with $a_a^{-1} = (a_a^V)^{-1} + (a_a^S)^{-1} A^{-1/3}$, where $a_a^V \approx 35 \text{ MeV}$ and $a_a^S \approx 10 \text{ MeV}$.
- Weakening of the symmetry term can be tied to the weakening of S(ρ) in uniform matter, with the fall of ρ.
- In spite of difficulties, significant, ±(1-2) MeV, constraints on S(ρ) at densities ρ =(0.05-0.13) fm⁻³.
- Forthcoming: charge radii, skins, $S(\rho \sim \rho_0)$ ©.

- Symmetry-energy term weakens as nuclear mass number decreases: from a_a ~ 23 Mev to a_a ~ 9 MeV for A ≤ 8.
- For $A \gtrsim 25$, $a_a(A)$ may be fitted with $a_a^{-1} = (a_a^V)^{-1} + (a_a^S)^{-1} A^{-1/3}$, where $a_a^V \approx 35 \text{ MeV}$ and $a_a^S \approx 10 \text{ MeV}$.
- Weakening of the symmetry term can be tied to the weakening of S(ρ) in uniform matter, with the fall of ρ.
- In spite of difficulties, significant, ±(1-2) MeV, constraints on S(ρ) at densities ρ =(0.05-0.13) fm⁻³.
- Forthcoming: charge radii, skins, $S(\rho \sim \rho_0)$ ©.

$$E = -a_V A + a_S A^{2/3} + a_C \frac{Z^2}{A^{1/3}} + \frac{a_a(A)}{A} \frac{(N-Z)^2}{A} + E_{\text{mic}}$$

In the standard formula $a_a(A) \equiv a_a^V \simeq 21 \text{ MeV}$, the symmetry term has purely volume character.

A-dependent symmetry coefficient?? Capacitor analogy: **Q** Nuclear: $E = -a_v A + a_s A^{2/3} + \frac{a_a}{A} (N - Z)^2$ $= E_0(A) + \frac{a_a}{A} (N - Z)^2$

Electrostatic:

Note: For coupled capacitors, capacitances add up. Contributions to *C* with different *A*-dependence?2,

$$E = -a_V A + a_S A^{2/3} + a_C \frac{Z^2}{A^{1/3}} + \frac{a_a(A)}{A} \frac{(N-Z)^2}{A} + E_{\text{mic}}$$

In the standard formula $a_a(A) \equiv a_a^V \simeq 21 \text{ MeV}$, the symmetry term has purely volume character.

A-dependent symmetry coefficient?? Capacitor analogy: O

Nuclear: $E = -a_v A + a_s A^{2/3} + \frac{a_a}{A} (N - Z)^2$ = $E_0(A) + \frac{a_a}{A} (N - Z)^2$

Electrostatic:

Note: For coupled capacitors, capacitances add up. Contributions to C with different A-dependence?2,

$$E = -a_V A + a_S A^{2/3} + a_C \frac{Z^2}{A^{1/3}} + \frac{a_a(A)}{A} \frac{(N-Z)^2}{A} + E_{\text{mic}}$$

In the standard formula $a_a(A) \equiv a_a^V \simeq 21 \text{ MeV}$, the symmetry term has purely volume character.

A-dependent symmetry coefficient?? Capacitor analogy: Q

Nuclear: $E = -a_v A + a_s A^{2/3} + \frac{a_a}{A} (N - Z)^2$ = $E_0(A) + \frac{a_a}{A} (N - Z)^2$

Electrostatic:

$$E = E_0 + \frac{Q^2}{2C} \Rightarrow \begin{cases} Q \equiv N - Z \\ C \equiv \frac{A}{2a_a} \end{cases}$$

Note: For coupled capacitors, capacitances add up Contributions to *C* with different *A*-dependence?

$$E = -a_V A + a_S A^{2/3} + a_C \frac{Z^2}{A^{1/3}} + \frac{a_a(A)}{A} \frac{(N-Z)^2}{A} + E_{\text{mic}}$$

In the standard formula $a_a(A) \equiv a_a^V \simeq 21 \text{ MeV}$, the symmetry term has purely volume character.

A-dependent symmetry coefficient?? Capacitor analogy: Q

Nuclear: $E = -a_v A + a_s A^{2/3} + \frac{a_a}{A} (N - Z)^2$ = $E_0(A) + \frac{a_a}{A} (N - Z)^2$

Electrostatic:

$$E = E_0 + rac{Q^2}{2C} \Rightarrow \left\{ egin{array}{c} Q \equiv N - A \ C \equiv rac{A}{2a_a} \end{array}
ight.$$

Note: For coupled capacitors, capacitances add up. Contributions to C with different A-dependence?

S NSCL

E.g. volume-surface breakdown of energy & asymmetry:

$$E = E_{S} + E_{V} \qquad N - Z = (N_{S} - Z_{S}) + (N_{V} - Z_{V})$$
$$E_{V} = a_{V}A + a_{a}^{V} \frac{(N_{V} - Z_{V})^{2}}{A} \qquad E_{S} = a_{S}A^{2/3} + a_{a}^{S} \frac{(N_{S} - Z_{S})^{2}}{A^{2/3}}$$

under charge symmetry, i.e. $N \leftrightarrow Z$ invariance.

Minimization of the energy *E* with respect to (N - Z) partition between volume and surface yields: $\rho\uparrow$

$$E = E_0 + E_a = E_0 + \frac{(N-Z)^2}{rac{A}{a_a^V} + rac{A^{2/3}}{a_a^S}}$$

Capacitance for asymmetry:

$$2C \equiv \frac{A}{a_a(A)} = \frac{A}{a_a^V} + \frac{A^{2/3}}{a_a^S}$$

volume capacitance

E.g. volume-surface breakdown of energy & asymmetry:

$$E = E_S + E_V \qquad N - Z = (N_S - Z_S) + (N_V - Z_V)$$
$$E_V = a_V A + a_a^V \frac{(N_V - Z_V)^2}{A} \qquad E_S = a_S A^{2/3} + a_a^S \frac{(N_S - Z_S)^2}{A^{2/3}}$$

under charge symmetry, i.e. $N \leftrightarrow Z$ invariance.

Minimization of the energy *E* with respect to (N - Z) partition between volume and surface yields:

$$E = E_0 + E_a = E_0 + rac{(N-Z)^2}{rac{A}{a_a^V} + rac{A^{2/3}}{a_a^S}}$$

Capacitance for asymmetry:

$$2C \equiv \frac{A}{a_a(A)} = \frac{A}{a_a^V} + \frac{A^{2/3}}{a_a^S}$$

volume capacitance

E.g. volume-surface breakdown of energy & asymmetry:

$$E = E_S + E_V \qquad N - Z = (N_S - Z_S) + (N_V - Z_V)$$
$$E_V = a_V A + a_a^V \frac{(N_V - Z_V)^2}{A} \qquad E_S = a_S A^{2/3} + a_a^S \frac{(N_S - Z_S)^2}{A^{2/3}}$$

under charge symmetry, i.e. $N \leftrightarrow Z$ invariance.

Minimization of the energy *E* with respect to (N - Z) partition between volume and surface yields:

surface

$$E = E_0 + E_a = E_0 + rac{(N-Z)^2}{rac{A}{a_a^V} + rac{A^{2/3}}{a_a^S}}$$

Capacitance for asymmetry:

$$2C \equiv \frac{A}{a_a(A)} = \frac{A}{a_a^V} + \frac{A^{2/3}}{a_a^S}$$

volume capacitance

E.g. volume-surface breakdown of energy & asymmetry:

$$E = E_S + E_V \qquad N - Z = (N_S - Z_S) + (N_V - Z_V)$$
$$E_V = a_V A + a_a^V \frac{(N_V - Z_V)^2}{A} \qquad E_S = a_S A^{2/3} + a_a^S \frac{(N_S - Z_S)^2}{A^{2/3}}$$

under charge symmetry, i.e. $N \leftrightarrow Z$ invariance.

Minimization of the energy *E* with respect to (N - Z) partition between volume and surface yields:

surface

$$E = E_0 + E_a = E_0 + rac{(N-Z)^2}{rac{A}{a_a^V} + rac{A^{2/3}}{a_a^S}}$$

Capacitance for asymmetry:

$$2C \equiv \frac{A}{a_a(A)} = \frac{A}{a_a^V} + \frac{A^{2/3}}{a_a^S}$$

volume capacitance

More on the Analogy

Asymmetry chemical potential (\propto difference of *n* & *p* separation energies)

$$\mu_{a} = \frac{\partial E}{\partial (N - Z)} = \frac{1}{2} (\mu_{n} - \mu_{p})$$
$$= \frac{2a_{a}(A)}{A} (N - Z)$$

Analogy: Voltage

$$V = \frac{\partial E}{\partial Q} = \frac{1}{C} Q \implies C \leftrightarrow \frac{A}{2a_a}$$

C C

Connected capacitors end up at the same voltage; charge distributes itself in proportion to capacitance.

Danielewicz & Lee

< 口 > < 同

More on the Analogy

Asymmetry chemical potential (\propto difference of *n* & *p* separation energies)

$$\mu_{a} = \frac{\partial E}{\partial (N - Z)} = \frac{1}{2} (\mu_{n} - \mu_{p})$$
$$= \frac{2a_{a}(A)}{A} (N - Z)$$

Analogy: Voltage

$$V = \frac{\partial E}{\partial Q} = \frac{1}{C} Q \implies C \leftrightarrow \frac{A}{2a_a}$$

Connected capacitors end up at the same voltage; charge distributes itself in proportion to capacitance.

Net density $\rho(r) = \rho_n(r) + \rho_p(r)$ is isoscalar \Rightarrow weakly depends on (N - Z) for given A. [Coulomb suppressed...]

 $\rho_{np}(r) = \rho_n(r) - \rho_p(r)$ isovector but $A \rho_{np}(r)/(N-Z)$ isoscalar! A/(N-Z) normalizing factor global...Similar local normalizing factor, in terms of intense quantities, $2a_a^V/\mu_a$, where $a_a^V \equiv S(\rho_0)$ Asymmetric density (formfactor for isovector density) defined:

$$\rho_a(r) = \frac{2a_a^V}{\mu_a} \left[\rho_n(r) - \rho_p(r) \right]$$

Normal matter: $\rho_a = \rho_0$. Both $\rho(r) \& \rho_a(r)$ weakly depend on η !

In any nucleus:

$$\rho_{n,p}(r) = \frac{1}{2} \left[\rho(r) \pm \frac{\mu_a}{2a_a^V} \rho_a(r) \right]$$

where $\rho(r) \& \rho_a(r)$ have universal features! (subject to shell effects) No shell-effects, ρ 's as dynamic vbles: Hohenberg-Kohn function

Net density $\rho(r) = \rho_n(r) + \rho_p(r)$ is isoscalar \Rightarrow weakly depends on (N - Z) for given A. [Coulomb suppressed...]

 $ho_{np}(r) =
ho_n(r) -
ho_p(r)$ isovector but $A
ho_{np}(r)/(N-Z)$ isoscalar! A/(N-Z) normalizing factor global... Similar local normalizing factor, in terms of intense quantities, $2a_a^V/\mu_a$, where $a_a^V \equiv S(
ho_0)$

Asymmetric density (formfactor for isovector density) defined:

$$\rho_a(r) = \frac{2a_a^V}{\mu_a} \left[\rho_n(r) - \rho_p(r) \right]$$

Normal matter: $\rho_a = \rho_0$. Both $\rho(r) \& \rho_a(r)$ weakly depend on η !

In any nucleus:

$$\rho_{n,p}(r) = \frac{1}{2} \left[\rho(r) \pm \frac{\mu_a}{2a_a^V} \rho_a(r) \right]$$

where $\rho(r) \& \rho_a(r)$ have universal features! (subject to shell effect No shell-effects, ρ 's as dynamic vbles: Hohenberg-Kohn function

Net density $\rho(r) = \rho_n(r) + \rho_p(r)$ is isoscalar \Rightarrow weakly depends on (N - Z) for given A. [Coulomb suppressed...]

 $\rho_{np}(r) = \rho_n(r) - \rho_p(r)$ isovector but $A \rho_{np}(r)/(N-Z)$ isoscalar! A/(N-Z) normalizing factor global... Similar local normalizing factor, in terms of intense quantities, $2a_a^V/\mu_a$, where $a_a^V \equiv S(\rho_0)$ Asymmetric density (formfactor for isovector density) defined:

$$\rho_a(r) = \frac{2a_a^V}{\mu_a} \left[\rho_n(r) - \rho_p(r) \right]$$

Normal matter: $\rho_a = \rho_0$. Both $\rho(r) \& \rho_a(r)$ weakly depend on η !

In any nucleus:

$$\rho_{n,p}(r) = \frac{1}{2} \left[\rho(r) \pm \frac{\mu_a}{2a_a^V} \rho_a(r) \right]$$

where $\rho(r) \& \rho_a(r)$ have universal features! (subject to shell effects) No shell-effects, ρ 's as dynamic vbles: Hohenberg-Kohn function

Net density $\rho(r) = \rho_n(r) + \rho_p(r)$ is isoscalar \Rightarrow weakly depends on (N - Z) for given A. [Coulomb suppressed...]

 $\rho_{np}(r) = \rho_n(r) - \rho_p(r)$ isovector but $A \rho_{np}(r)/(N-Z)$ isoscalar! A/(N-Z) normalizing factor global... Similar local normalizing factor, in terms of intense quantities, $2a_a^V/\mu_a$, where $a_a^V \equiv S(\rho_0)$ Asymmetric density (formfactor for isovector density) defined:

$$\rho_a(r) = \frac{2a_a^V}{\mu_a} \left[\rho_n(r) - \rho_p(r) \right]$$

Normal matter: $\rho_a = \rho_0$. Both $\rho(r) \& \rho_a(r)$ weakly depend on η !

In any nucleus:

$$\rho_{n,p}(r) = \frac{1}{2} \left[\rho(r) \pm \frac{\mu_a}{2a_a^V} \rho_a(r) \right]$$

where $\rho(r) \& \rho_a(r)$ have universal features! (subject to shell effective shell effect to sh

Net density $\rho(r) = \rho_n(r) + \rho_p(r)$ is isoscalar \Rightarrow weakly depends on (N - Z) for given A. [Coulomb suppressed...]

 $\rho_{np}(r) = \rho_n(r) - \rho_p(r)$ isovector but $A \rho_{np}(r)/(N-Z)$ isoscalar! A/(N-Z) normalizing factor global... Similar local normalizing factor, in terms of intense quantities, $2a_a^V/\mu_a$, where $a_a^V \equiv S(\rho_0)$ Asymmetric density (formfactor for isovector density) defined:

$$\rho_a(r) = \frac{2a_a^V}{\mu_a} \left[\rho_n(r) - \rho_p(r) \right]$$

Normal matter: $\rho_a = \rho_0$. Both $\rho(r) \& \rho_a(r)$ weakly depend on η !

In any nucleus:

$$\rho_{n,p}(r) = \frac{1}{2} \left[\rho(r) \pm \frac{\mu_a}{2a_a^V} \rho_a(r) \right]$$

where $\rho(r) \& \rho_a(r)$ have universal features! (subject to shell effects) No shell-effects, ρ 's as dynamic vbles: Hohenberg-Kohn function

$$\rho_{n,p}(r) = \frac{1}{2} \left[\rho(r) \pm \frac{\mu_a}{2a_a^V} \rho_a(r) \right]$$

Net density ρ usually parameterized w/Fermi function

$$\rho(r) = \frac{\rho_0}{1 + \exp(\frac{r-R}{d})} \quad \text{with} \quad R = r_0 A^{1/3}$$

Asymmetric density ρ_a ?? Related to $a_a(A)$ & to S(A)

$$2C \equiv \frac{A}{a_a(A)} = \frac{2(N-Z)}{\mu_a} = 2\int \mathrm{d}r \, \frac{\rho_{np}}{\mu_a} = \frac{1}{a_a^V} \int \mathrm{d}r \, \rho_a(r)$$

In uniform matter

$$\mu_{a} = \frac{\partial E}{\partial (N - Z)} = \frac{\partial [S(\rho) \rho_{np}^{2} / \rho]}{\partial \rho_{np}} = \frac{2 S(\rho)}{\rho} \rho_{np}$$
$$\Rightarrow \rho_{a} = \frac{2a_{a}^{V}}{\mu_{a}} \rho_{np} = \frac{a_{a}^{V} \rho}{S(\rho)}$$

n&p densities carry record of $S(\rho)! \implies$ Hartree-Fock study of surface

$$\rho_{n,p}(r) = \frac{1}{2} \left[\rho(r) \pm \frac{\mu_a}{2a_a^V} \rho_a(r) \right]$$

Net density ρ usually parameterized w/Fermi function

$$\rho(r) = \frac{\rho_0}{1 + \exp(\frac{r-R}{d})} \quad \text{with} \quad R = r_0 A^{1/3}$$

Asymmetric density ρ_a ?? Related to $a_a(A)$ & to $S(\rho)$!

$$2C \equiv \frac{A}{a_a(A)} = \frac{2(N-Z)}{\mu_a} = 2\int \mathrm{d}r \, \frac{\rho_{np}}{\mu_a} = \frac{1}{a_a^V} \int \mathrm{d}r \, \rho_a(r)$$

In uniform matter

$$\mu_{a} = \frac{\partial E}{\partial (N - Z)} = \frac{\partial [S(\rho) \rho_{np}^{2} / \rho]}{\partial \rho_{np}} = \frac{2 S(\rho)}{\rho} \rho_{np}$$
$$\Rightarrow \quad \rho_{a} = \frac{2a_{a}^{V}}{\mu_{a}} \rho_{np} = \frac{a_{a}^{V} \rho}{S(\rho)}$$

n&p densities carry record of $S(\rho)! \implies$ Hartree-Forck study of surface

$$\rho_{n,p}(r) = \frac{1}{2} \left[\rho(r) \pm \frac{\mu_a}{2a_a^V} \rho_a(r) \right]$$

Net density ρ usually parameterized w/Fermi function

$$\rho(r) = \frac{\rho_0}{1 + \exp(\frac{r-R}{d})} \quad \text{with} \quad R = r_0 A^{1/3}$$

Asymmetric density ρ_a ?? Related to $a_a(A)$ & to $S(\rho)$!

$$2C \equiv \frac{A}{a_a(A)} = \frac{2(N-Z)}{\mu_a} = 2\int \mathrm{d}r \, \frac{\rho_{np}}{\mu_a} = \frac{1}{a_a^V} \int \mathrm{d}r \, \rho_a(r)$$

In uniform matter

$$\mu_{a} = \frac{\partial E}{\partial (N - Z)} = \frac{\partial [S(\rho) \rho_{np}^{2} / \rho]}{\partial \rho_{np}} = \frac{2 S(\rho)}{\rho} \rho_{np}$$
$$\Rightarrow \quad \rho_{a} = \frac{2a_{a}^{V}}{\mu_{a}} \rho_{np} = \frac{a_{a}^{V} \rho}{S(\rho)}$$

n&p densities carry record of $S(\rho)! \implies$ Hartree Forck study of

$$\rho_{n,p}(r) = \frac{1}{2} \left[\rho(r) \pm \frac{\mu_a}{2a_a^V} \rho_a(r) \right]$$

Net density ρ usually parameterized w/Fermi function

$$\rho(r) = \frac{\rho_0}{1 + \exp(\frac{r-R}{d})} \quad \text{with} \quad R = r_0 A^{1/3}$$

Asymmetric density ρ_a ?? Related to $a_a(A)$ & to $S(\rho)$!

$$2C \equiv \frac{A}{a_a(A)} = \frac{2(N-Z)}{\mu_a} = 2\int \mathrm{d}r \, \frac{\rho_{np}}{\mu_a} = \frac{1}{a_a^V} \int \mathrm{d}r \, \rho_a(r)$$

In uniform matter

$$\mu_{a} = \frac{\partial E}{\partial (N - Z)} = \frac{\partial [S(\rho) \rho_{np}^{2} / \rho]}{\partial \rho_{np}} = \frac{2 S(\rho)}{\rho} \rho_{np}$$
$$\Rightarrow \quad \rho_{a} = \frac{2a_{a}^{V}}{\mu_{a}} \rho_{np} = \frac{a_{a}^{V} \rho}{S(\rho)}$$

n&p densities carry record of $S(\rho)! \implies$ Hartree-Fock study of \mathfrak{sum}

$$\rho_{n,p}(r) = \frac{1}{2} \left[\rho(r) \pm \frac{\mu_a}{2a_a^V} \rho_a(r) \right]$$

Net density ρ usually parameterized w/Fermi function

$$\rho(r) = \frac{\rho_0}{1 + \exp\left(\frac{r-R}{d}\right)} \quad \text{with} \quad R = r_0 A^{1/3}$$

Asymmetric density ρ_a ?? Related to $a_a(A)$ & to $S(\rho)$!

$$2C \equiv \frac{A}{a_a(A)} = \frac{2(N-Z)}{\mu_a} = 2\int \mathrm{d}r \, \frac{\rho_{np}}{\mu_a} = \frac{1}{a_a^V} \int \mathrm{d}r \, \rho_a(r)$$

In uniform matter

$$\mu_{a} = \frac{\partial E}{\partial (N - Z)} = \frac{\partial [S(\rho) \rho_{np}^{2} / \rho]}{\partial \rho_{np}} = \frac{2 S(\rho)}{\rho} \rho_{np}$$
$$\Rightarrow \rho_{a} = \frac{2a_{a}^{V}}{\mu_{a}} \rho_{np} = \frac{a_{a}^{V} \rho}{S(\rho)}$$

Comparisons to SHF

Issues in data-theory comparisons (codes by P.-G. Reinhard): 1. No isospin invariance in SHF - impossible to follow the procedure for data

- 2. Shell corrections not feasible at such scrutiny as for data
- 3. Coulomb effects.

Solution: Procedure that yields the same results as the energy, in the bulk limit, but is weakly affected by shell effects:

