Dense baryonic matter in the CBM experiment at FAIR

Claudia Höhne, University Gießen CBM collaboration

Outline

Introduction & Motivation

- Heavy-ion collisions
- QCD phase diagram
- Current and future experiments on dense baryonic matter
- Signatures for phase transitions, CP, characterization of matter

- CBM experiment at SIS-100 and SIS-300 at FAIR
- \rightarrow focus on rare probes (dileptons, open charm): unique feature of CBM
 - feasibility studies
 - detector R&D

Equation of state at high baryon densities

5

- What is the equation of state at high baryon densities?
- New degrees of freedom?
- \rightarrow use heavy-ion collisions in the lab to study this matter

Transport calculations: heavy ion collisions

simulation of Au+Au collisions at different beam energies:

- \rightarrow maximum baryon densities ρ increase with beam energy
- \rightarrow several times normal nuclear matter density achieved prevailing for a few fm/c!

Transport calculations: heavy ion collisions

Baryon and energy density in central cell (Au+Au, b=0 fm): HSD: mean field, hadrons + resonances + strings

Claudia Höhne

The QCD phase diagram

 \rightarrow use heavy-ion collisions to investigate the phases and degrees of freedom of strongly interacting matter at different baryon densities and temperatures!!

Claudia Höhne

8

The QCD phase diagram

Experimental results:

- Freeze-out curve (T, μ_B) with $T_{ch} \approx 160$ MeV at $\mu_B \approx 0$
- partonic matter at high T
- onset of deconf. at √s~8 GeV

L-QCD Predictions:

- crossover transition at μ_B=0
 Y. Aoki et al., Nature 443 (2006) 675
- 1. order phase transition with critical endpoint at μ_B > 0

The QCD diagram at high μ_B

Experiments on dense baryonic matter

Experiment	Energy range (Au/Pb beams)	Reaction rates Hz
PHENIX & STAR @RHIC, BNL	√s _{NN} = 7 – 200 GeV	1 – 800 (limitation by luminosity)
NA61@SPS CERN	E _{kin} = 20 – 160 A GeV √s _{NN} = 6.4 – 17.4 GeV	80 (limitation by detector)
MPD@NICA Dubna	√s _{NN} = 4.0 – 11.0 GeV	~1000 (design luminosity of 10 ²⁷ cm ⁻² s ⁻¹ for heavy ions)
CBM & HADES @FAIR, Darmstadt	E_{kin} = 2.0 – 35 A GeV $\sqrt{s_{NN}}$ = 2.7 – 8.3 GeV	$10^5 - 10^7$ (limitation by detector)

Experiments on dense baryonic matter

Experiment	Observables for beam energies at about $\sqrt{s_{NN}} = 8 \text{ GeV}$ (high baryon density region)			
	hadrons	correlations, fluctuations	dileptons	charm
PHENIX & STAR @RHIC, BNL	yes	yes	no (BES II ?)	no
NA61@SPS CERN	yes	yes	no	no
MPD@NICA Dubna	yes	yes	no	no
CBM & HADES @FAIR, Darmstadt	yes	yes	yes	yes
CBM & HADES @FAIR, Darmstadt	yes	yes	yes	ye

Claudia Höhne

Chemical freeze-out: a different view

- high (net-)baryon and energy densities created in central Au+Au collisions
- different energy scans complementary!
- FAIR adding lots of new information due to accessibility of rare probes!

Chemical freeze-out: a different view

 indications for phase transition to partonic phase at about 30 AGeV beam energy (√s~8 GeV)!

Phase transition at high μ_B ?

- limiting chemical freeze-out temperature: hadronization at phase boundary
- other signatures showing changes at around 30 AGeV beam energy

(Multi-)strange particle production

- strangeness in equilibrium at low μ_{B}
- equilibration of strangeness at high $\mu_{\text{B}}?$
- \rightarrow need multistrange particles!

Claudia Höhne

- freeze-out at (another) phase boundary at high $\mu_{\text{B}}?$

HADES: Sub-threshold **E**⁻ production

Ar+KCI reactions at 1.76A GeV

• Ξ^{-} yield by appr. factor 25 higher than thermal yield

Search for fluctuations: CP – 1st order PT

open questions: CP? 1st order phase transition?

- \rightarrow search for fluctuations, e.g. particle ratio fluctuations
- many results, no clear picture yet
- importance of systematic studies, e.g. energy & centrality dependencies! NA49, arXiv:1204.2130: K multiplicity dependence in K/ π fluctuations!

Dileptons as direct probe of high density phase

- CERES at 40 and 158 AGeV beam energy: excess higher at lower energy → importance of baryon density!
- HADES at SIS18: see strong coupling to baryons!

Charm propagation

Elliptic flow at FAIR

- \rightarrow probe EOS!
- new data on identified particles from STAR BES!
- only scarce information for high net-baryon densities (2-40 AGeV)

The Facility for Antiproton and Ion Research

CBM and HADES at SIS-100 and SIS-300

- systematic exploration of high baryon density matter in A+A collisions from 2 – 45 AGeV beam energy with 2nd generation experiments
- explore the QCD phase diagram, high baryon density matter, chiral symmetry restauration

FAIR: Modularized start version

CBM @ SIS-100

The first years of CBM operation will be at SIS-100 with a start setup

Beam	P _{lab, max}	$\sqrt{{\sf S}_{\sf NN,\ max}}$
heavy ions (Au)	11A GeV	4,7 GeV
light ions $(Z/A = 0.5)$	14A GeV	5,3 GeV
protons	29 GeV	7,5 GeV

Physics case at SIS-100:

- What are the equation of state and the degrees of freedom of strongly interacting matter at densities as present in the cores of neutron stars?
- What are the properties of hadrons in dense matter? Is chiral symmetry restored?
- o Does strangeness exist in form of heavy, meta-stable objects?

 How is charm produced close to the threshold, and how does it propagate in cold nuclear matter?

CEM: Physics topics and Observables

The equation-of-state at high ρ_{B}

- collective flow of hadrons
- particle production at threshold energies (open charm)

Deconfinement phase transition at high ρ_{B}

- excitation function and flow of strangeness (K, Λ , Σ , Ξ , Ω)
- excitation function and flow of charm (J/ ψ , ψ ', D⁰, D[±], Λ_c)
- charmonium suppression, sequential for J/ ψ and ψ' ?

QCD critical endpoint

Claudia Höhne

- excitation function of event-by-event fluctuations (K/ π ,...)

Onset of chiral symmetry restoration at high ρ_{B}

• in-medium modifications of hadrons ($\rho,\omega,\phi \rightarrow e^+e^-(\mu^+\mu^-), D$)

Systematics & precision!! Rare probes as messengers from the medium! → characterization of the created medium!

Jörn Knoll Stefan Leupold Jørgen Randrup Ralf Rapp Peter Senger *Editors*

TURE NOTES IN PHYSICS 814

The CBM Physics Book

Compressed Baryonic Matter in Laboratory Experiments

 $\underline{\mathscr{O}}$ Springer

26

Particle multiplicities & experimental challenges

Particle multiplicity · branching ratio for min. bias Au+Au collisions at 25 GeV (from HSD and thermal model)

Central Au+Au collision at 25 AGeV (UrQMD+GEANT)

160 p 400 π^- 400 π^+ 44 K⁺ 13 k

- 10⁵ 10⁷ Au+Au reactions/sec
- determination of (displaced) vertices ($\sigma \approx 50 \ \mu m$)
- identification of leptons and hadrons
- fast and radiation hard detectors
- self-triggered readout electronics
- high speed data acquisition and high performance computer farm for online event selection
- 4-D event reconstruction

The CBM experiment

• tracking, momentum determination, vertex reconstruction: radiation hard silicon pixel/strip detectors (STS) in a magnetic dipole field

Silicon Tracking System

double sided silicon microstrip detector 7.5° stereo angle, 58 μ m pitch, 300 μ m thick, bonded to ultra-thin micro-cables, radiation hardness

Silicon Tracking System

Micro Vertex Detector

Monolithic Active Pixel Sensors (MAPS, also CMOS-Sensors)

• Invented by industry (digital camera)

Optimized for one parameter

 Modified for charged particle detection since 1999 by IPHC Strasbourg

Current

32

• Also foreseen for ILC, STAR, ALICE... => Sharing of R&D costs.

			compromise	
	CBM SIS300	MAPS* (2003)	MAPS* (2012)	MIMOSA-26 Binary, Ø
Single point res.	~ 5 µm	1.5 µm	1 µm	4 µm
Material budget	< 0.3% X ₀	~ 0.1% X ₀	~ 0.05% X ₀	~ 0.05% X ₀
Rad. hard. non-io.	>10 ¹³ n _{eq}	10 ¹² n _{eq} /cm ²	>3x10 ¹⁴ n _{eq}	>10 ¹³ n _{eq}
Rad. hard. io	> 3 Mrad	200 krad	> 1 Mrad	> 500 krad
Time resolution	< 30 µs	~ 1 ms	~ 25 µs	110 µs

Micro Vertex Detector

Complete prototype under preparation to be tested in 2012

Standalone FLES package

KFParticle Finder

tracking + secondary vertex finder:

- 8 ms/core in minbias Au+Au events, 25 AGeV
- 62 ms/core in central Au+Au events, 25 AGeV
 → works as well for exoctics: measurable if existing, reasonable rates!

Daughter particle decay points Mother particle decay point

Open charm simulation at SIS-100 and 300

- secondary vertex reconstruction with a precision of 60 μm
- 2 MVD detectors at 5 and 10 cm from the main vertex
- realistic detector response
- 10¹² minb. events 25 AGeV Au+Au: few 10k D_0 and about twice as much D^{\pm}

RICH Detector

RICH radiator box filled with CO_2

elaborated gas system

real dimension prototype in test beam at CERN, October 2011

photocamera with 16 MAPMTs (H8500, H10966); 1024 channels; selftriggered n-XYter readout; w & w/o WLS coating

2x2 mirror array scan of RICH camera with movable mirror frames

RICH Detector

TRD

beamtest at CERN, October 2011:

- test 12 different chamber types (w & w/o drift, distances...)
- test different radiator types (fibers, foils,...)
- very nice agreement of simulated and measured data for the energy spectra

next: real dimension chamber (60x60)cm²

e-spectrum

Dilepton simulations: LMVM & charmonium

realistic detector response electrons: 1‰ target

LMVM di-electrons:

background dominated by e^{\pm} from π^0 Dalitz decays

statistics shown correspond to few s beamtim only!

SIS-100: RICH only!

muons at SIS-100:

Claudia Höhne

start setup for charmonium measurements

Dens

Summary

CBM@FAIR – high μ_B , moderate T:

- exploration of QCD phase diagram at high baryon densities at SIS-100 and SIS-300 (2-45 AGeV beam energy)
 - \rightarrow unique feature: rare probes!
- together with HADES unique possibility of characterizing properties of baryon dense matter
- implementation of increasingly realistic detector response in simulations, parallelization of event reconstruction, physics performance studies
- detector R&D, TDRs on the way

Claudia Höhne

[A. Andronic et al., arXiv:0911.4806]

Dense Baryonic Mat

CBM collaboration

China:

Tsinghua Univ., Beijing CCNU Wuhan USTC Hefei

Croatia:

University of Split RBI, Zagreb

Cyprus:

Nikosia Univ.

Czech Republic:

CAS, Rez Techn. Univ. Prague

France: IPHC Strasbourg

Germany: Univ. Gießen Univ. Heidelberg, Phys. Inst. Univ. HD, Kirchhoff Inst. Univ. Frankfurt Univ. Mannheim Univ. Münster FZ Rossendorf GSI Darmstadt Univ. Tübingen Univ. Tübingen Univ. Wuppertal Hungaria: KFKI Budapest Eötvös Univ. Budapest

India: Aligarh Muslim Univ., Aligarh IOP Bhubaneswar Panjab Univ., Chandigarh Gauhati Univ., Guwahati Univ. Rajasthan, Jaipur Univ. Jammu, Jammu IIT Kharagpur SAHA Kolkata Univ Calcutta, Kolkata VECC Kolkata Univ. Kashmir, Srinagar Banaras Hindu Univ., Varanasi

Korea Univ. Seoul Pusan National Univ.

Norway:

Univ. Bergen

Poland:

Krakow Univ. Warsaw Univ. Silesia Univ. Katowice Nucl. Phys. Inst. Krakow

Portugal:

LIP Coimbra

Romania:

NIPNE Bucharest Bucharest University

Russia:

IHEP Protvino INR Troitzk ITEP Moscow KRI, St. Petersburg Kurchatov Inst. Moscow LHE, JINR Dubna LPP, JINR Dubna LIT, JINR Dubna MEPHI Moscow Obninsk State Univ. PNPI Gatchina SINP, Moscow State Univ. St. Petersburg Polytec. U. Ukraine:

INR, Kiev Shevchenko Univ. , Kiev

Silicon Tracking System:

microstrip detectors + self-triggering readout electronics

TRD R&D

energy loss spectra of e and π (here shown at 3 GeV/c):

Phase transition at high μ_B ?

The QCD diagram at high μ_B

Experiments scanning the QCD phase diagram at high net-baryon densities:

RHIC low-energy scan →

bulk observables: yields, spectra, collective flow, fluctuations, and correlations of abundant hadrons

NA49/61@SPS → bulk observables

MPD@NICA → bulk observables

CBM@FAIR →

bulk and rare observables like multistrange (anti-)hyperons, dileptons, open and hidden charm

High net-baryon density matter at CBM

- high baryon and energy densities created in central Au+Au SIS 100 and SIS 300 energies which prevail for a few fm/c!
- agreement between different models (not shown)

ρ-meson spectral function

- ρ -meson couples to the medium: "melts" close to T_c and at high μ_B
- vacuum lifetime τ_0 = 1.3 fm/c
- dileptons = penetrating probe

"SPS"

- connection to chiral symmetry restoration?
- no measurement between 2 and 40 AGeV

 particularly sensitive to baryon density

 $\Delta \pi$

 π

e⁺

e⁻, μ⁻

 region with m < 0.4 GeV/c² of special interest!

HADES + CBM offer the unique opportunity for measuring the complete excitation function of electromagnetic radiation in A+A collisions from 2 – 45 AGeV beam energy

Dileptons

- dileptons as direct probe of the high density phase
- CERES at 40 and 158 AGeV beam energy: excess higher at lower energy → importance of baryon density!

Hadronic rescattering after freeze-out?

Hadron identification

hadron identification
 via time-of-flight (80 ps
 resl.)

• $2\sigma_m \pi$ -K separation up to p~3.2 GeV/c

 tails in mass spectra from track mismatches, double hits

Claudia Höhne

Hadron identification

Be prepared for exotica: multi-strange di-baryons

High net baryon densities at low SPS energies

Claudia Höhne

D meson reconstruction

• important layout studies: MAPS position and thickness !

• HSD: <D+> = 4.2 · 10⁻⁵/ev

• 10¹² central events ~ 8-10 weeks running time

1st MAPS	Position	D+	D+	D+
thickness	of 1st	efficiency	S/B (2σ)	in 10 ¹² ev.
150 μm	10 cm	4.2%	9	162·10 ³
500 μm	10 cm	1.05%	0.93	41·10 ³
300 μm	5 cm	2.6%	1.1	103·10 ³

Muon identification

- alternating absorber-detector system allows efficient muon tracking
- central Au+Au collisions, 25 AGeV, absorber layout as (20+20+20+30+35) cm iron, 3 detector stations in between
- certain momentum cutoff depending on absorber length
- main part of remaining background: muons from π , K decays

Detector layout optimization: Muon absorber

