Signals of the equation of state from black-hole formation

Matthias Hempel, Basel University EMMI Workshop, Tübingen, 12.10.2012

in collaboration with:

Tobias Fischer (GSI/TU Darmstadt) Matthias Liebendörfer (U Basel) Andrew Steiner (INT Seattle) Jürgen Schaffner-Bielich (U Heidelberg)

CSCS

HP2C High Performance and High Productivity Computing

Signals of the equation of state from black-hole formation

Outline:

- 1.) Introduction to the supernova EOS
- 2.) EOS constraints from experiments and neutron stars
- 3.) Core-collapse supernova simulations with black-hole formation
- 4.) Conclusions

Supernova EOS – introduction

 EOS provides the crucial nuclear physics input for astrophysical simulations: thermodynamic quantities and nuclear composition

plenty of EOSs for cold neutron stars

	neutron stars	supernovae	heavy ion collisions
timescales	(d - Myrs)	ms	fm/c
equilibrium	full	weak eq. only partly	only strong eq.
temperatures	0	0 - 100 MeV	10 - 200 MeV
charge neutrality	yes	yes	no
asymmetry	high	moderate	low

• matter in SN: no weak equilibrium, finite temperature

 \rightarrow somewhere between cold neutron stars and heavy-ion collisions

- challenge of the supernova EOS:
 - -T = 0 100 MeV
 - $-Y_{\rm e} = 0 0.6$
 - $-\rho = 10^4 10^{15} \text{ g/cm}^3$
 - EOS in tabular form, \sim 1 million configurations (T, Y_e, ρ)
- SN EOS: multi-purpose EOS

Matthias Hempel Darmstadt, 15.5.2012

nucleonic EOS

at high densities

strange

physics

Available supernova EOS

Hillebrandt, Wolff, Nomoto (1984)	Skyrme interactions, NSE, Hartree-Fock
Lattimer & Swesty (1991) (LS)	Skyrme interactions, compressible liquid-drop model, three different compressibilities, and tabulated variants
H. Shen et al. (1998) (STOS)	table for TM1, relativistic mean-field (RMF), Thomas-Fermi approximation
MH & Schaffner-Bielich tables for NL3, TM1, TMA, FSUgold, DD2, SHFo, SHFx: (2010) (HS) NSE, RMF, excluded volume	
G. Shen, Horowitz, Teige (2010)	tables for NL3 and FSUgold: virial expansion, RMF, Hartree

Typel et al. (2010)	table for DD2 in preparation: gRMF	
Furusawa et al. (2011)	table for TM1 in preparation: liquid drop, NSE, RMF	

Nakazato et al. 2008	quark matter with large nc added to STOS	
Ishizuka et al. 2008	hyperons added to STOS	
Sagert et al. 2009	quark matter with low n_c added to STOS \rightarrow explosions in 1D	
H. Shen et al. 2010	lambdas added to STOS	

EOS model: excluded volume NSE with interactions

MH, J. Schaffner-Bieleich; NPA837(2010) (HS)

- chemical mixture of nuclei and interacting nucleons in nuclear statistical equilibrium
- model characteristics:
 - ensemble of heavy nuclei
 - inclusion of all possible light nuclei
 - nuclear shell effects
 - various nucleon interactions
- input: nuclear mass tables, Coulomb energies, excited states, excluded volume effects, RMF interactions

 seven EOS tables for different RMF interactions: NL3, TM1, TMA, FSUgold, DD2, SHFo, SHFx <u>http://phys-merger.physik.unibas.ch/~hempel/eos.html</u>

Nucleons – Relativistic Mean-Field

- interaction by meson exchange
- non-linear RMF with meson (self-) interactions (TM1, TMA, FSUgold, NL3)

$$\mathcal{L} = \bar{\psi}(i\gamma^{\mu}\partial_{\mu} - M)\psi + \frac{1}{2}\partial_{\mu}\sigma\partial^{\mu}\sigma - \frac{1}{2}m_{\sigma}^{2}\sigma^{2} - \frac{1}{3}g_{2}\sigma^{3} - \frac{1}{4}g_{3}\sigma^{4} - g_{\sigma}\bar{\psi}\sigma\psi - \frac{1}{4}\Omega_{\mu\nu}\Omega^{\mu\nu} + \frac{1}{2}m_{\omega}^{2}\omega_{\mu}\omega^{\mu} + \frac{1}{4}g_{4}(\omega_{\mu}\omega^{\mu})^{2} - g_{\omega}\bar{\psi}\gamma^{\mu}\psi\omega_{\mu} - \frac{1}{4}R^{a}{}_{\mu\nu}R^{a\mu\nu} + \frac{1}{2}m_{\rho}^{2}\rho_{\mu}^{a}\rho^{a\mu} - g_{\rho}\bar{\psi}\gamma_{\mu}\tau^{a}\psi\rho^{\mu a} - \Lambda\omega_{\mu}\omega^{\mu}\rho_{\nu}^{a}\rho^{a\nu}$$

- alternative: density-dependent couplings (DD2)
- coupling constants fitted to experimental data
- well-established description of finite nuclei and nuclear matter

Sugahara & Toki 1994 Toki et al. 1995 Todd-Rutel & Piekarewicz 2005 Lalazissis et al. 1997 Typel 2005, Typel et al. 2010

EOS constraints – NS mass and radius measurements

EOS constraints – NS mass and radius measurements

A. Steiner, MH, T. Fischer; arXiv1207.2184

EOS constraints – symmetry energy

NL3• TM1 100 тма 80 neutron FSUgol Astrophysic 60 (MeV) SHFO ipòte 40 SHF 20 -> 0 -20 26 28 32 34 36 24 30 S, (MeV)

[Lattimer & Lim, arXiv:1203.4286]

- convergence of observational, experimental and theoretical constraints
- standard non-linear RMF in disagreement (TM1,NL3,TMA)
- two new RMF models/SN EOS: SHFo (optimal) SHFx (extreme)

- G: Gandolfi et al. 2012: quantum Monte-Carlo
- H: Hebeler et al. 2010: Chiral EFT, neutron matter

EOS constraints – saturation properties & maximum mass

	$n_B^0 ~[{\rm fm}^{-3}]$	$E_0 [\mathrm{MeV}]$	$K \; [MeV]$	$J \; [{ m MeV}]$	$L [{ m MeV}]$	$M_{\rm max} [{ m M}_{\odot}]$
TM1	0.146	-16.31	282	36.95	110.99	2.213
TMA	0.147	-16.03	318	30.66	90.14	2.022
FSUgold	0.148	-16.27	230	32.56	60.44	1.739
NL3	0.148	-16.24	271	37.39	118.50	2.791
DD2	0.149	-16.02	243	31.67	55.04	2.422
SHFo	0.158	-16.19	245	31.57	47.10	2.059
SHFx	0.160	-16.16	239	28.67	23.18	2.130
LS180	0.155	-16.00	180	28.61	73.82	1.828
LS220	0.155	-16.00	220	28.61	73.82	2.031
Exp.	~ 0.15	~ -16	240 ± 10 [1]	30 - 34 [2]	40 - 110 [2]	$> 1.97 \pm 0.04$ [3]

 \rightarrow additional constraints from heavy-ion experiments at high densities:

FOPI (W. Trautmann/N. Hermann)

KAOS (C. Sturm)

- span a broad range of possible RMF models
- provide a "best fit" EOS

	references	type of constraint
[1]	Piekarewicz JPG 2010	compilation of measurements of isoscalar giant monopole resonances
[2]	Tsang et al. PRL 2009 Carbone et al. PRC 2010	compilation of experiments: isospin diffusion,pygmy dipole resonance, nuclear masses, GDR, isoscaling, antiprotonic atoms
[3]	Demorest et al. Nature 2010	measurement of Shapiro delay

Supernova simulations – EOS signal from black hole formation

MH, T. Fischer, J. Schaffner-Bielich, M. Liebendörfer; ApJ 748, 70 (2012) A. Steiner, MH, T. Fischer; arXiv1207.2184

simulations by Tobias Fischer, GSI/TU Darmstadt

- general relativistic radiation hydrodynamics in spherical symmetry
- three flavor Boltzmann neutrino transport

40 M_{sun} progenitor of Woosley & Weaver ApJS 101 (1995) (blue supergiant)

"failed supernova": core-collapse to stellar black hole

xz-Plane, Time wrt Core-Bounce: 0.22940 s

• snapshot from a 3D simulation by M. Liebendörfer (15 M_{sun} progenitor)

• continuous emission of neutrinos, measurable with present neutrino detectors

State of matter before the collapse

Neutrino signal

• μ/τ-neutrinos most sensitive to EOS because emitted from deeper layers

Time until black hole formation

• previous EOS studies for this progenitor

[Sumiyoshi et al.; 2007ApJ667]

[O'Connor & Ott.; 2011ApJ730]

 possible conclusion: the compressibility K / the maximum mass M_{max} dictates "soft" or "stiff" behavior

Time until black hole formation

- unexpected: maximum mass of cold neutron stars and K are not directly correlated with t_{BH}
- not found before, because only STOS and LS were available

Correlation of t_{BH} with maximum mass

Correlation of $t_{\mbox{\scriptsize BH}}$ with maximum mass

 maximum masses in the simulations are significantly increased (up to 0.6 M_{sun}) compared to T = 0

Correlation of $t_{\mbox{\scriptsize BH}}$ with maximum mass

EOS constraints important

- maximum masses in the simulations are significantly increased (up to 0.6 M_{sun}) compared to T = 0
- static s = 4 configurations reproduce the simulations
- complex temperature effects
- due to: effective mass, symmetry energy, non-relativistic vs. relativistic
- new correlation: t_{BH} gives information about the finite entropy EOS

Conclusions

- new SHFo and SHFx EOS: fit to NS observations
- supernova EOS tables and nuclear composition available for NL3, TM1, TMA, FSUgold, DD2, SHFo, SHFx: http://phys-merger.physik.unibas.ch/~hempel/eos.html
- conditions in supernovae are somewhere between heavy-ion collisions and neutron stars
- theory, nuclear experiments and neutron stars constrain supernova dynamics
- black hole formation gives information about the finite temperature EOS
- temperature effects are EOS model dependent
 - \rightarrow extract information about nucleon effective mass or symmetry energy