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Motivation

GW driven f-mode instability of relativistic stars

Time evolution of the instability

GW signal of the f-mode and its detection prospectives
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CFS instability

Rotating NS are prone to CFS 
gravitational-wave instability 

Radiation drives a mode unstable if 

1

τ
≤ 0Instability condition:

1

τ
=

Ė

2E

where

ωr (ωr −mΩ) ≤ 0

δρ ∼ eiωt−t/τ where

τ = τ (Ω, T )

Viscous mechanisms limit the 
gravitational-wave instability

=⇒ τgw ≤ 0

δρ ∼ e−t/τgw

and
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Equations
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We calculate the mode-frequency and eigenfunctions from time 
simulations.

With the energy volume integrals we determine the damping/growth 
times.

We study the instability evolution with a set of evolution equations 
which evolves the mode amplitude, stellar rotation and temperature.

Method
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N = 1

N = 2/3

Mode Frequency

Evolution of the relativistic perturbation equations in Cowling approximation

Standard model

Supramassive model

δ (∇νT
µν) = 0 δgµν = 0where
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Assumption: dissipative timescales are much longer than the oscillation 
period

Viscous and GW timescales

δσij =
1

2

�
∇iδuj +∇jδui − 2

3
gij∇δσ

�

δσ = ∇jδu
j

1

τb
=

1

2E

�
dV ζ δσδσ∗

1

τs
=

1

E

�
dV η δσijδσ∗

ij

1

τgw
=

ω

2E

�

l≥2

Nl (ω −mΩ)2l+1
�
|δDlm|2 + |δJlm|2

�

ζ ∼ T 6

η ∼ T−2

Bulk and shear viscosity

GW radiation reaction

=⇒ τgw ≤ 0ω (ω −mΩ) ≤ 0
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dE

dt
= −2E

τ
dJ
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J = Js + αJ̃c(Ω)

Cv
dT
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= −Lν +Hs

Instability Evolution

Mode growth Non-linear saturation

Basic equations

Amplitude Normalization

E = αErot α = 1 =⇒ E � 10−2M⊙c
2

Hs =
2E

τs

δρ ∼ α1/2Note:
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Results
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N = 1 polytrope Instability trajectory
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N = 2/3 polytrope Trajectory

l=m=4 f-mode Evolution
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l=m=4 f-mode l=m=3 f-mode

hc = h

�

ν2
����
dt

dν

����

GW signal

Characteristic strain tobs ≤ 1yr
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Magnetic Torque

Magnetic field accelerates 
the transition through the 
instability window 

Mag. Torque becomes 
dominant for 

Bp ≥ 1012G

dJmag

dt
∼ B2

pR
6Ω3

Dipole formula 

N = 2/3 polytrope
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F-mode versus R-mode

N = 2/3 model
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Conclusions
The GW signal of very compact objects may be detectable from Virgo Cluster by ET.

The magnetic torque affects the spin down when  

The r-mode may limit the f-mode instability, but we need to know the relative 
saturation amplitude more accurately. 

 The shear viscosity re-heating may delay the superfluid transition in the core.  

More ingredients in future work.

The l=m=2 f-mode may become important if we abandon the Cowling 
approximation.

Study realistic EoS and consider dUrca reactions. 

Include the Crust and the effects of Ekman layers.

Bp ≥ 1012G
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Unstable modes

F-mode  (2≤m≤4)

R-mode (m=2)

CFS unstable for any Ω

CFS unstable in rapidly 
rotating stars

Newtonian N=1 Star
R128 Topical Review
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Figure 8. The growth/damping timescales of the most relevant unstable modes of a uniformly
rotating n = 1 polytrope with M = 1.5M! and R = 12.533 km. The l = m = 4 f-mode (dashed
curve) is compared to the l = m = 2 r-mode (solid line). We also show the rough estimate (44)
for the f-mode (dotted curve). This figure captures the qualitative features of the problem (e.g.,
the f-mode becomes unstable above a critical rotation rate !c ≈ 0.85!K ), but comes with several
disclaimers. Most importantly, these results will be affected by differential rotation and general
relativistic effects. (The f-mode data were provided by Lee Lindblom.)

for the l = m modes. This estimate captures the overall features of the full numerical results
and hence provides a useful illustration, cf figure 8. More detailed calculations show that only
f-modes with m ! 5 are expected to grow fast enough to lead to an astrophysically relevant
instability. On the other hand, the low-order modes only become unstable at extremely high
rotation rates (and the quadrupole mode may not be unstable at all). Taking this also into
consideration, one finds that the l = m = 4 f-mode is the most strongly unstable mode in a
Newtonian star [89].

The situation is slightly different for the r-modes. As discussed previously, the r-modes
are always retrograde in the rotating frame and prograde in the inertial frame. This means that
they satisfy the CFS instability criterion at all rates of rotation [90, 91]. In other words, the
r-modes are generically unstable in rotating perfect fluid stars. For the l = m = 2 r-mode,
one can show that the growth time is

tgw ≈ −47M−1
1.4R−4

10 P 6
−3 s (45)

for n = 1 polytropes [92, 93]. It is interesting to compare this result to the (presumably) most
important f-mode. Consider a particular n = 1 polytropic stellar model with mass 1.5M! and
radius 12.533 km [22], for which the Kepler limit would correspond to a period of 0.8 ms. For
a star spinning at this rate the r-mode would grow on a timescale of roughly 4 s, while one
finds tgw ≈ 5 ×105 s for the m = 4 f-mode [22]. A similar comparison for other rotation rates
is provided in figure 8. These estimates indicate that the r-mode instability is significantly
stronger than that of the f-mode. Having said this, one must be somewhat careful before
drawing definite conclusions since differential rotation could change the picture considerably.
In particular, an unstable m = 2 f-mode could become competitive with the r-mode. For
example, Lai and Shapiro [54] estimate that the quadrupole f-mode grows on a timescale
tgw ≈ 1 s for β ≈ 0.24. One must also keep in mind that f-mode instability is strengthened
by relativistic effects, and that the m = 2 f-mode may become unstable at reasonable rates
of rotation, cf section 3.3. An important challenge for future work in this area concerns the

General Relativity may strengthen the f-mode instability considerably 

τ44gw ∼ 102 − 104s

τ22gw ∼ 1− 10s
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