

Towards an all-optical access to the lowest nuclear excitation in $^{\rm 229}{\rm Th}$

Lars v.d.Wense

LMU München/ Max-Planck-Institut für Quantenoptik

September 25th 2012

Contents

Introduction

Setup Overview

Stopping and Extraction: Buffer-gas Cell Mass-Filtering Collection VUV-Optics and Energy Determination Detection

Experimental Approach

²³³ U-Source
Buffer-gas Stopping Cell
Nozzle and Extraction-RFQ
Simulation and preparatory measurement
Quadrupole Mass Spectrometer
Ion Focusing and Collection
VUV-Optics
Energy Determination
Detection

Summary

Introduction

Motivation: Generally known

Aim: Direct detection of isomeric transition

Improvement of precision of transition wavelength to better than 1 nm

Concept: Spatially decoupled population and deexcitation of isomeric state via 5 steps:

- 1. Buffer-gas cell with isomer extraction
- 2. Mass separation
- 3. Collection
- 4. UV fluorescence focusing
- 5. Detection

Stopping and Extraction: Buffer-gas Cell

Step 1: Stopping and Extraction of ²²⁹Th-Recoils

- ²²⁹Th α -Recoils from ²³³U are stopped in He buffer gas
- guided via RF-funnel to exit nozzle
- dragged out through (supersonic) Laval-nozzle together with He gas
- guided and phase-space-cooled by radio frequency quadrupole (RFQ)

Mass-Filtering

Step 2: Mass-Filtering of ²²⁹Th²⁺-ions

- High mass-resolved purification of ²²⁹Th²⁺-ions using QMS
- Suppression of other ²³³U decay-chain products
- reduction of background
- unambiguous signal origin from ²²⁹Th

Collection

Step 3: Collection of ²²⁹Th²⁺-ions

- Guiding and focusing with nozzle-like electrode system
- Collection on 50 μ m diameter micro electrode
- small diameter for highly efficient photon optics
- coating to minimize non-radiative decay

Setup Overview VUV-Optics and Energy Determination

Step 2: Step 1: Step 3: Step 4: Stopping & Extraction Mass Filtering Collection VUV Optics & Filter Buffer-gas Cell Parabolic Mirror 2 Collection Surface Focusina Extraction-RFO Nozzle ²³³U Source VUV Filter Quadrupole Mass xtraction Spectrometer Nozzle Parabolic Mirror **RF** Funnel

Step 4: VUV-Optics and Energy Determination of Isomeric Decay

- Isomeric decay on micro-electrode
- parallelization of decay photons using parabolic mirror 1
- Filter with sharp absorption edge for transition wavelength determination
- focusing of signal onto detector using second parabolic mirror

Detection

Step 5: Detection

- MCP used for position-sensitive single-photon detection
- Photons are converted to electron signals
- Phosphor screen to visualize electron signals
- CCD camera to monitor screen

²³³*U*-Source

- Presently: U₃O₈ evaporated on stainless steel backing
- effective ²²⁹Th-recoil yield investigated by detailed numerical simulations
- Currently 5000 recoils per second (20 mm source diameter)
- Extension to 90 mm diameter electroplated source envisaged, leading to 80,000 recoils per second
- Source thickness: 13 nm
- 260 kBq ²³³U source needed (license available)

Buffer-gas Stopping Cell

- $\blacktriangleright\,$ Chamber: UHV standards, bakeable up to 180 $^\circ\text{C}$
- catalytic purified He 6.0, electropolished gas tubing, cryotrap in gas line
- 2% population branch, 100 isomers/s enter stopping volume (later 1600/s)
- Recoils are stopped in 40 mbar ultra-pure He (\sim 10 mm stopping range)
- Ions are guided efficiently by RF-funnel (50 ring electrodes)
- DC gradient guides ions to nozzle-exit
- Extraction time is 1-2 ms. Prompt decays already in stopping cell

J. Neumayr et al.: Rev. Sci. Instr. 77 (2006) 065109

Nozzle and Extraction-RFQ

- ▶ Ion extraction together with He gas through 0.6 mm nozzle exit
- ▶ Laval nozzle designed for supersonic extraction into 10^{-2} to 10^{-3} mbar
- Ions caught by radio-frequency quadrupole (extraction-RFQ)
- Neutral He gas is removed by strong turbo molecular-pump
- Ambient gas pressure exploited for phase-space cooling of ions
- ▶ 48% total extraction efficiency measured from ²²³Ra recoil source
- ▶ 10% extraction efficiency assumed for Thorium due to high reactivity
- about 10 isomers/s are extracted (later 160/s)

Simulation and preparatory measurement

Extraction through Nozzle

Ions near Exit

Nozzle & RFQ Overview

- Besides ²²⁹Th also other isotopes of ²³³U decay chain extracted
- Suppression of accompanying α-decay products required

Quadrupole Mass Spectrometer

* E. Haettner: PhD thesis, Univ. Giessen (2011)

- New QMS currently tested
- Improved design values* and high mechanical precision
- Active stabilization of RF amplitudes (10⁻³ precision)
- Efficiency at mass resolution $\frac{m}{\Delta m} \approx 160$: 80%
- Only one q/m-value: 70% in 2⁺

QMS overview

Ion Focusing and Collection

- Focusing of ions using specially designed electrodes
- Collection on $50\mu m$ diameter micro-electrode
- Electrode surface coated with MgF₂ to avoid quenching
- Total focusing and collection efficiency: $\sim 40\%$
- isomeric decay on collection surface expected
- number of expected decay photons in 4π: 10 · 0.7 · 0.8 · 0.4 ≈ 2.2 per second (later 35/s)

Microscopic image of collection surface

VUV-Optics

- Optical setup has been optimized using numerical 3D ray-tracing
- Best results for two parabolic VUV mirrors:
 - Entrance mirror for high numerical aperture, parabolic shape to avoid spherical aberration
 - Exit mirror to avoid intensity losses and changes in focal length due to uncertain wavelength
- ▶ 40 mm open aperture and 12 mm hole leading to 42% acceptance
- Each parabolic mirror has a reflectivity of about 70%
- Optical efficiency is about 20%

▶ For detailed discussion of alternative optics scenarios: see poster

Energy Determination

- ▶ Parallel light allows for spectral analysis using VUV absorption filters
- \blacktriangleright Filters with sharp absorption edge (${\sim}1$ nm) available in VUV region
- Filters can be rotated to change the absorption wavelength
- Suitable to measure wavelength to better than 1 nm accuracy

Detection

- Micro-Channel-Plate detector for VUV detection (Csl-coated)
- Phosphor screen to visualize electrons
- ► Expected (typical) quantum efficiency: ~16%
- ▶ leading to possibility to detect $2.2 \cdot 0.2 \cdot 0.16 \approx 0.07$ photons per second
- But: Due to source extension not all photons within 10% of peak maximum
- Monitoring with CCD camera

Results of numerical simulation:

(Values at 10% of peak maximum)

 * Dark count of MCP: 0.05 s⁻¹mm⁻² typical value

Lars v.d.Wense

Towards an Optical Access to 229m Th

- \blacktriangleright Current source intensity: 5000 Th/s \rightarrow 0.06 counts/s
- 70 μ m spot size \rightarrow signal to background of 360:1
- $\blacktriangleright\,$ increase to 80,000 Th/s possible \rightarrow 1 count/s
- $\blacktriangleright\,$ no significant change in spot size $\rightarrow\,$ signal to background of 5600:1

 \Rightarrow High probability for direct detection of $^{229m}{\rm Th}$ and improved accuracy of transition wavelength

Thank you for listening.

L.v.d. Wense P.G. Thirolf D. Kalb M. Laatiaoui T.W. Hänsch T. Udem (LMU/MPQ) (LMU) (LMU) (GSI) (LMU/MPQ) (MPQ)