# Evaluation of systematic effects for <sup>229</sup>Th<sup>3+</sup> nuclear ion clock

#### Andrei Derevianko Physics Department, University of Nevada, Reno andrei@unr.edu



EMMI workshop "The <sup>229</sup>Th Nuclear Isomer Clock", GSI, Sept. 27, 2012



# Modern atomic clocks

Microwave (Cs, Rb) <sup>133</sup>Cs: defines the SI units of length and time

Singly-charged ion clocks (Al+,Hg+,Cd+,...) Accuracy record-holders

**Optical lattice clocks (Sr, Hg, Yb,...)** Ultrastable

# The accuracy frontier

| Clock                       | Fractional inaccuracy   |
|-----------------------------|-------------------------|
| Primary cesium standard     | 3 x 10 <sup>-16</sup>   |
| Ion clocks (Al+/Mg+)        | 9 x 10 <sup>-18</sup>   |
| Optical lattice clocks (Sr) | 1.5 x 10 <sup>-16</sup> |

Projected "end-of-the-road" for ion and lattice clocks : 10<sup>-18</sup>



## The ultimate clock?

#### Single-Ion Nuclear Clock for Metrology at the 19th Decimal Place

C. J. Campbell, A. G. Radnaev, A. Kuzmich, V. A. Dzuba, V. V. Flambaum, and A. Derevianko

Phys. Rev. Lett. 108, 120802 (2012)



TABLE I. Estimated systematic error budget for a <sup>229</sup>Th<sup>3+</sup> clock using realized single-ion clock technologies. Shifts and uncertainties are in fractional frequency units  $(\Delta \nu / \nu_{clk})$  where  $\nu_{clk} = 1.8$  PHz. See text for discussion.

|   | Effect                | $ \text{Shift}  (10^{-20})$ | Uncertainty $(10^{-20})$ |
|---|-----------------------|-----------------------------|--------------------------|
|   | Excess micromotion    | 10                          | 10                       |
|   | Gravitational         | 0                           | 10                       |
|   | Cooling laser Stark   | 0                           | 5                        |
|   | Electric quadrupole   | 3                           | 3                        |
|   | Secular motion        | 5                           | 1                        |
|   | Linear Doppler        | 0                           | 1                        |
|   | Linear Zeeman         | 0                           | 1                        |
|   | Background collisions | 0                           | 1                        |
| H | Blackbody radiation   | 0.013                       | 0.013                    |
|   | Clock laser Stark     | 0                           | $\ll 0.01$               |
|   | Trapping field Stark  | 0                           | $\ll 0.01$               |
|   | Quadratic Zeeman      | 0                           | 0                        |
|   | Total                 | 18                          | 15                       |

# Trapping <sup>229</sup> Th<sup>3+</sup>





GATech linear Paul trap

Wigner crystals of laser-cooled Th<sup>3+</sup> ions (T~mK)

C. Campbell, A. Radnaev, A. Kuzmich, PRL 106, 223001 (2011)

# Systematic effects

Clock frequency is affected by:

- ✓ Stark shifts: cooling/probe lasers, trapping filed
- ✓ Zeeman shifts
- Electric quadrupole (gradients of trapping field)
- ✓ Blackbody radiation
- ✓ Doppler shifts
- ✓ Gravity

## Compound system



$$H = H_{\text{nuclear}} + H_{\text{electrons}} + H_{\text{Couloumb-point-nucleus}} + \Delta H_{e-n}$$

Nucleus = source of EM potentials = = E0 (Coulomb) + magnetic-dipole (mu) + electric-quadrupole (Q)+...

Nuclear transition => jump in rho, mu, Q

Keep the electrons in the ground state (Th<sup>3+</sup> 5F<sub>5/2</sub>)

## The virtues of stretching



Stretched states (decoupling electrons and nucleons)

$$|F = J + I, M_F = F >= |5F_{5/2}, M_J = J > |I, M_I = I >$$

Perturbation

U

$$\widehat{X} = \widehat{X}_{\text{nuc}} + \widehat{X}_{\text{el}}$$

Clock shift 
$$h\delta v_{\text{clock}} = \langle X \rangle_e - \langle X \rangle_g = \langle X_{\text{nuc}} \rangle_e - \langle X_{\text{nuc}} \rangle_g + \Delta X_{\text{e-n}}$$

### Virtual clock transitions



Two STRETCHED transitions with opposite shifts in B-field: Averaging => Linear Zeeman goes away

# **Differential template**



Relativistic many-body calculations of atomic structure – typical accuracy 10%. Dirac-Hartree-Fock + Bruckner core-polarization + random-phase-approximation

### **Isomer contribution**



difference in the RMS radii of the nuclear ground- and isomer-state charge distributions

Example: Quadrupole moment (in a.u.) of the ground electronic state

| $C_{fermi}, fm$            | $\mathbf{DHF}$ | DHF+RPA   | DHF+BO    |
|----------------------------|----------------|-----------|-----------|
| 6.5                        | -1.832544      | -1.382214 | -1.639564 |
| 7.0                        | -1.832442      |           |           |
| 7.5                        | -1.832336      | -1.381968 | -1.639402 |
| $\Delta Q/\Delta C$ ,au/fm | +0.000208      | +0.000246 | +0.000162 |

 $d\mathcal{Q}/dC_{Fermi} \approx 2 \times 10^{-4} |e| a_0^2/fm$ 

## hyperfine-mediated contribution



K. Beloy, U. I. Safronova, and A. Derevianko, PRL 97, 040801 (2006)

### Nuclear parameters

TABLE II. Rms-radius and intrinsic quadrupole moments of neutron and proton densities of the  $^{229}$ Th  $5/2^+$  ground state calculated with different energy functionals. Differences of these moments between  $3/2^+$  first excited state and  $5/2^+$  ground state.

|                                              | SkM*    |        | SII     | I       |
|----------------------------------------------|---------|--------|---------|---------|
|                                              | HF      | HFB    | HF      | HFB     |
| 5/2+                                         |         |        |         |         |
| $R_{\rm rms}$ (neutron) (fm)                 | 5.8789  | 5.8716 | 5.8971  | 5.8923  |
| $R_{\rm rms}$ (proton) (fm)                  | 5.7180  | 5.7078 | 5.7817  | 5.7769  |
| $Q_{20}$ (neutron) (fm <sup>2</sup> )        | 9.4407  | 9.2608 | 9.1990  | 9.0711  |
| $Q_{20}$ (proton) (fm <sup>2</sup> )         | 9.5461  | 9.3717 | 9.3542  | 9.1643  |
| $3/2^+ - 5/2^+$                              |         |        |         |         |
| $\Delta R_{\rm rms}$ (neutron) (fm)          | -0.0040 | 0.0036 | -0.0008 | -0.0005 |
| $\Delta R_{\rm rms}$ (proton) (fm)           | -0.0038 | 0.0039 | 0.0000  | -0.0005 |
| $\Delta Q_{20}$ (neutron) (fm <sup>2</sup> ) | -0.2427 | 0.2647 | -0.0767 | -0.0516 |
| $\Delta Q_{20}$ (proton) (fm <sup>2</sup> )  | -0.1824 | 0.2756 | -0.0339 | -0.0495 |

 $|\Delta R_{rms}| < 0.0038 \,\mathrm{fm}$  $|\Delta Q_{20}| < 0.28 |e| \,\mathrm{fm}^2$  $\Delta \mu = -0.53 \,\mu_n$ 

E. Litvinova, H. Feldmeier, J. Dobaczewski, and V. Flambaum, PRC79, 064303 (2009).

# Uncertainty budget

TABLE I. Estimated systematic error budget for a  $^{229}$ Th<sup>3+</sup> clock using realized single-ion clock technologies. Shifts and uncertainties are in fractional frequency units ( $\Delta \nu / \nu_{clk}$ ) where  $\nu_{clk} = 1.8$  PHz. See text for discussion.

| Effect                | $ \text{Shift}  (10^{-20})$ | Uncertainty $(10^{-20})$ |
|-----------------------|-----------------------------|--------------------------|
| Excess micromotion    | 10                          | 10                       |
| Gravitational         | 0                           | 10                       |
| Cooling laser Stark   | 0                           | 5                        |
| Electric quadrupole   | 3                           | 3                        |
| Secular motion        | 5                           | 1                        |
| Linear Doppler        | 0                           | 1                        |
| Linear Zeeman         | 0                           | 1                        |
| Background collisions | 0                           | 1                        |
| Blackbody radiation   | 0.013                       | 0.013                    |
| Clock laser Stark     | 0                           | $\ll 0.01$               |
| Trapping field Stark  | 0                           | $\ll 0.01$               |
| Quadratic Zeeman      | 0                           | 0                        |
| Total                 | 18                          | 15                       |
|                       |                             |                          |

# Example: Quadrupole shift



 $\Delta Q \approx 1 \times 10^{-5} |e| a_0^2$  Dominated by anti-shielded direct nuclear contribution

$$\frac{\Delta v_{QS}}{v_{\rm clock}} \approx 3 \times 10^{-20}$$

# Uncertainty budget

TABLE I. Estimated systematic error budget for a <sup>229</sup>Th<sup>3+</sup> clock using realized single-ion clock technologies. Shifts and uncertainties are in fractional frequency units  $(\Delta \nu / \nu_{clk})$ where  $\nu_{clk} = 1.8$  PHz. See text for discussion.

| Effect                | $ \text{Shift}  (10^{-20})$ | Uncertainty $(10^{-20})$ |
|-----------------------|-----------------------------|--------------------------|
| Excess micromotion    | 10                          | 10                       |
| Gravitational         | 0                           | 10                       |
| Cooling laser Stark   | 0                           | 5                        |
| Electric quadrupole   | 3                           | 3                        |
| Secular motion        | 5                           | 1                        |
| Linear Doppler        | 0                           | 1                        |
| Linear Zeeman         | 0                           | 1                        |
| Background collisions | 0                           | 1                        |
| Blackbody radiation   | 0.013                       | 0.013                    |
| Clock laser Stark     | 0                           | $\ll 0.01$               |
| Trapping field Stark  | 0                           | $\ll 0.01$               |
| Quadratic Zeeman      | 0                           | 0                        |
| Total                 | 18                          | 15                       |

# 10<sup>-19</sup> and highly-charged ions

Nuclear clock  $^{229}$ Th (Th<sup>3+</sup> ion clock):

- Improvement is due to tiny size of the quantum oscillator => suppressed couplings
- Yet unobserved optical transition
- Radioactivity



clocks based on highly-charged ions:

- As the ionic charge increases, the electronic cloud shrinks thereby greatly reducing couplings to detrimental external perturbations
- Highly-forbidden laser-accessible OPTICAL transitions
- HCIs can be trapped and cooled
- ✤ The 10<sup>-19</sup> accuracy mark is feasible

*Highly-charged ions as a basis of optical atomic clockwork of exceptional accuracy A. Derevianko, V. A. Dzuba, V. V. Flambaum, arXiv:1208.3528* 



#### Laser-Tuned Nuclear Clock Would Be Accurate for Billions of Years

By Adam Mann March 20, 2012 | 5:28 pm | Categories: Physics





#### questcequilmanque

You've managed to find the single most depressing scientific endeavor of all time: Spend years of research trying to make an ultra-precise clock more precise. If they succeed, only electrons will notice. What's the suicide rate among these people?

# Why do we need better clocks?

New timepieces will lose only milliseconds over the age of the Universe



GPS on Mars: Deep-space navigation (DSN network of NASA)



Are constants of nature constant?



Perfect quantum memory (qubits)