

A DIRECT SEARCH FOR THE ²²⁹TH ISOMER TRANSITION USING THE ALS SYNCHROTRON: MEASUREMENTS OF CANDIDATE HOST CRYSTALS

> Wade Rellergert Eric Hudson Scott Sullivan EMMI Workshop

September 27, 2012

Laser "Mössbauer" Spectroscopy

Laser "Mössbauer" Spectroscopy

Nuclei relatively insensitive to environment

Laser "Mössbauer" Spectroscopy

Nuclei relatively insensitive to environment

Dope ²²⁹Th into VUV transparent crystal

Laser "Mössbauer" Spectroscopy

Nuclei relatively insensitive to environment

Dope ²²⁹Th into VUV transparent crystal

 Higher total addressable number and longer storage times than ion trapping
 Mössbauer spectroscopy has told us what to expect Lamb-Dicke regime (no Doppler or recoil) Shifts/Linewidths

Laser "Mössbauer" Spectroscopy

Nuclei relatively insensitive to environment

Dope ²²⁹Th into VUV transparent crystal

Higher total addressable number and longer storage times than ion trapping
Mössbauer spectroscopy has told us what to expect Lamb-Dicke regime (no Doppler or recoil) Shifts/Linewidths

Solid-state optical frequency reference?

Nuclei relatively insensitive to environment

Dope ²²⁹Th into VUV transparent crystal

Higher total addressable number and longer storage times than ion trapping
Mössbauer spectroscopy has told us what to expect Lamb-Dicke regime (no Doppler or recoil) Shifts/Linewidths

Solid-state optical frequency reference?

NIST - F1

Laser "Mössbauer" Spectroscopy

NIST – F1

Nuclei relatively insensitive to environment

Dope ²²⁹Th into VUV transparent crystal

 Higher total addressable number and longer storage times than ion trapping

 Mössbauer spectroscopy has told us what to expect Lamb-Dicke regime (no Doppler or recoil) Shifts/Linewidths

Solid-state optical frequency reference?

$H_{HFS} = H_{E0} + H_{M1} + H_{E2} + \dots$ Shifts: $\Delta[MHz] = \langle 100 + 0 + \langle 100 \rangle \leq 200 \text{ MHz}$

Broadening:

 $\delta[kHz] = 0.01 + <10 + 0 \le 10 \text{ kHz}$ Other effects:

- 2^{nd} Order Doppler $\rightarrow 1 Hz/K$
 - Zero-phonon transition mode dependence \rightarrow T_D \geq 500 K
 - Optical phonons frozen out (also possibly resolvable side-bands)
 - Acoustic phonons don't matter

 $\Gamma_N \ll r \text{ and } N_e \ll N_g \implies N_e = rN_g \times t$

$$\Gamma_N \ll r \text{ and } N_e \ll N_g \implies N_e = rN_g \times t$$

- Tunable dye laser system coupled into H₂ Raman cell (Schomburg *et al.* Appl. Phys. B **30**, 131-134 (1983))
- -> 10 Hz, 10 uJ pulses (10¹³ photons/s) and linewidth of 0.1 cm⁻¹

- Tunable dye laser system coupled into H₂ Raman cell (Schomburg *et al.* Appl. Phys. B **30**, 131-134 (1983))
 - -> 10 Hz, 10 uJ pulses (10¹³ photons/s) and linewidth of 0.1 cm⁻¹
- 2. Synchrotron light sources such as the Advanced Light Source (ALS) at LBL
 - -> 10^{16} photons/s and linewidth of 0.175 eV (1400 cm⁻¹)

- Tunable dye laser system coupled into H₂ Raman cell (Schomburg *et al.* Appl. Phys. B **30**, 131-134 (1983))
 - -> 10 Hz, 10 uJ pulses (10¹³ photons/s) and linewidth of 0.1 cm⁻¹
- 2. Synchrotron light sources such as the Advanced Light Source (ALS) at LBL
 - -> 10^{16} photons/s and linewidth of 0.175 eV (1400 cm⁻¹)
- → ALS can cover the region of interest in $1/100^{\text{th}}$ the time

- Tunable dye laser system coupled into H₂ Raman cell (Schomburg *et al.* Appl. Phys. B **30**, 131-134 (1983))
 - -> 10 Hz, 10 uJ pulses (10¹³ photons/s) and linewidth of 0.1 cm⁻¹
- 2. Synchrotron light sources such as the Advanced Light Source (ALS) at LBL
 - -> 10^{16} photons/s and linewidth of 0.175 eV (1400 cm⁻¹)
- \rightarrow ALS can cover the region of interest in $1/100^{\text{th}}$ the time

(Scho -> 10 ŀ 2. Synch Light -> 1 0.175 → ALS 1/100th t

$$\boldsymbol{\mathcal{T}} = \frac{g_2}{g_1} \frac{\lambda^2}{2\pi} \frac{\Gamma_N}{\Gamma_b + \Delta}$$

(Scho -> 10 ŀ 2. Synch Light -> 1 0.175 → ALS 1/100th t

~ 10⁻²⁸ cm²

(Scho -> 10 H 2. Synch Light -> 1 => 10⁻²⁸ cm² 0.175 → ALS 1/100th t

$$\boldsymbol{\sigma} = \frac{g_2}{g_1} \frac{\lambda^2}{2\pi} \frac{\Gamma_N}{\Gamma_b + \Delta}$$

 $\sim 10^{-28} \text{ cm}^2$

1. Tunable dve laser system coupled into H₂ Raman cell

(Scho -> 10 H 2. Synch Light -> 1 0.175 → ALS

1/100th

$$\sigma = \frac{g_2}{g_1} \frac{\lambda^2}{2\pi} \frac{\Gamma_N}{\Gamma_b + \Delta}$$
$$\sim 10^{-28} \text{ cm}^2$$
$$\Rightarrow 10^{-28} \text{ cm}^2 \text{ x } 10^{16} \text{ photons/s*cm}^2$$

-> 10 | 2. Synch Light -> 0.175 \rightarrow ALS $1/100^{th}$

(Scho

ALS Uncutator

60-W Light Bulb

Candle

The ALS

1. Tunable dve laser system coupled into H₂ Raman cell

-> 10 H 2. Synch Light -> 1 0.175

 \rightarrow

1/100th

ALS

(Scho

$$\sigma = \frac{g_2}{g_1} \frac{\lambda^2}{2\pi} \frac{\Gamma_N}{\Gamma_b + \Delta}$$

~ 10⁻²⁸ cm²
=> 10⁻²⁸ cm² x 10¹⁶ photons/s*cm² x 10¹⁸ nuclei
= 10⁶ nuclei excited per second!!!

EXPECTED FLUORESCENCE RATE AT ALS

FIG. 1: (color online). Total fluorescence rate after sample illumination for 1000 s with the ALS is indicated by the shaded region. This region is bounded by the upper and lower limit expected for the excited state decay rate, Γ . Excitation at ALS should lead to a fluorescence rate of 15 kHz after only 100 s of illumination

EXPECTED FLUORESCENCE RATE AT ALS

FIG. 1: (color online). Total fluorescence rate after sample illumination for 1000 s with the ALS is indicated by the shaded region. This region is bounded by the upper and lower limit expected for the excited state decay rate, Γ . Excitation at ALS should lead to a fluorescence rate of 15 kHz after only 100 s of illumination

Given our light detection efficiency this allows us to cover several eV in one shift at the ALS with a signal to noise > 10:1

EXPECTED FLUORESCENCE RATE AT ALS

FIG. 1: (color online). Total fluorescence rate after sample illumination for 1000 s with the ALS is indicated by the shaded region. This region is bounded by the upper and lower limit expected for the excited state decay rate, Γ . Excitation at ALS should lead to a fluorescence rate of 15 kHz after only 100 s of illumination

Given our light detection efficiency this allows us to cover several eV in one shift at the ALS with a signal to noise > 10:1

Longer illumination times will allow the monochromator measurements narrowing range to 0.1 nm

HOST CRYSTAL PROPERTIES

- reasonably transparent in the VUV (down to ~160 nm)
- pure crystalline structure with all e⁻'s paired

- must chemically accept ²²⁹Th in the 4+ charge state
- resilient to radiation damage from alphas emitted by ²²⁹Th (~100 uCi)
- low VUV induced fluorescent backgrounds

CRYSTALS TESTED TO DATE

• So far we have grown (w/ Th-232) and tested:

- Th:LiCAF (also pure LiCAF)
- Th:LiSAF (also pure LiSAF)
- Th:NaYF
- Th:YLF
- Th:BaMgF4
- Th: Li_2ZiF_6
- Na_2ThF_6

THORIUM DOPING TESTS

Properly measuring doping concentration: Variability for the same sample (Th:LiCAF) using different techniques.

Results for one growth run:

Rutherford back- scattering (LANL)	500 ppm	5x10 ¹⁸ cm ⁻³
Secondary Ion MS	10 ppm	1x10 ¹⁷ cm ⁻³
Gas discharge MS	300 ppm	3x10 ¹⁸ cm ⁻³
Neutron Activation	1.4(7) ppm	1x10 ¹⁶ cm ⁻³

Properly measuring doping concentration:

Only Neutron Activation provides reliable results

EAI Project: 5876-12

Thorium by Instrumental Neutron Activation Analysis

Calibrated sample, 10000 ppm thorium

1% Th:LiSAF sample ~1% doping efficiency

• ²²⁹Th emits 4.8 MeV alpha

ALS BACKGROUND RUNS

- Since August 2008 we have been awarded and used 144 beamtime hours (8 hour shifts)
- We have characterized 6 potential host crystals, most doped with ²³²Th:
 - Th:NaYF, Th:YLF, Th:LiCAF, Th:LiSAF, Th:BaMgF₄, Na₂ThF₆
- While crystals do show some VUV induced fluorescence, it is of a low level and short-lived

IOP Conference Series: Materials Science and Engineering 15, 012005 (2010).

ALS BACKGROUND RUNS

No m

RUINE

ALS BACKGROUND RUNS

14

ALS - CRYSTAL MEASUREMENT Photodiode Crystal Procedure: 1. Illuminate crystal (5-200 s) 2. Block ALS beam, open PMT shutter 3. Collect/count photons (5-100 s) 4. Repeat a few times 5. Change beam energy repeat **PMT**

ALS - CRYSTAL MEASUREMENT

ALS - CRYSTAL MEASUREMENT

ALS - CRYSTAL MEASUREMENT Photodiode Crystal Procedure: 1. Illuminate crystal (5-200 s) 2. Block ALS beam, open PMT shutter 3. Collect/count photons (5-100 s) 4. Repeat a few times 5. Change beam energy repeat **PMT**

ALS - CRYSTAL MEASUREMENT Photodiode Crystal Procedure:

PMT

- 1. Illuminate crystal (5-200 s)
- 2. Block ALS beam, open PMT shutter
- 3. Collect/count photons (5-100 s)
- 4. Repeat a few times
- 5. Change beam energy repeat

ALS - CRYSTAL MEASUREMENT

Procedure:

- 1. Illuminate crystal (5-200 s)
- 2. Block ALS beam, open PMT shutter
- 3. Collect/count photons (5-100 s)
- 4. Repeat a few times
- 5. Change beam energy repeat

ALS - CRYSTAL MEASUREMENT Photodiode Crystal Procedure:

PMT

- 1. Illuminate crystal (5-200 s)
- 2. Block ALS beam, open PMT shutter
- 3. Collect/count photons (5-100 s)
- 4. Repeat a few times
- 5. Change beam energy repeat

ALS - CRYSTAL MEASUREMENT Photodiode Crystal Procedure: 1. Illuminate crystal (5-200 s) 2. Block ALS beam, open PMT shutter 3. Collect/count photons (5-100 s) 4. Repeat a few times 5. Change beam energy repeat **PMT**

TH:BAMGF4

TH:BAMGF4

TH:BAMGF4

TH:LISAF

•200 s Illumination, 100 s photon collection (50 ms delay)
•Maximum fluorescence rate detected ~100 kHz
•Fluorescence lifetime at 9.5 eV measured to be 500 ms

TH:LICAF

Photodiodo Signal (µA) 20 15 White light only 10 7.5 9.0 9.5 10.0 7.68.0 8.5 Beam Energy (eV)

250

•Target doping 1% molar 5 s Illumination, 5 s photon collection (5 ms delay) •Highest value (at 7.4 eV) corresponds to 350 kHz, 12 ms lifetime

MOCK SEARCH FOR ISOMER

ALS Search Signal to Noise taking all data for Th:LiCAF into account

•200 s Illumination, 100 s collection (5 ms delay)
•Largest value corresponds to ~25 kHz

•5 s Illumination, 5 s photon collection

•Maximum fluorescence rate ~400 kHz, but mostly with ~35 ms lifetime

•Showed dark spot/radiation damage due to VUV beam

- •5 s Illumination, 5 s photon collection
- •Maximum fluorescence rate ~400 kHz, but mostly with ~35 ms lifetime
- •Showed dark spot/radiation damage due to VUV beam

•5 s Illumination, 5 s photon collection

•Maximum fluorescence rate ~400 kHz, but mostly with ~35 ms lifetime

•Showed dark spot/radiation damage due to VUV beam

- We've characterized 6 potential host crystals.
 - Doping looks very promising

 All six appear to be okay in terms of VUV induced fluorescence (short-lived and broadband), but Na₂ThF₆ and Th:NaYF show signs of radiation damage (possibly impurities)

- Th:LiSAF and Th:LiCAF exhibited lowest fluorescence levels
 - BG Fluorescence rates of ~10-100 kHz, but short lived (<500 ms)
 - Compare to expected rates of 15 kHz with lifetime of 10,000 s or 1 GHz with lifetime of 100 s!