Introduction	Chiral Density Wave	Results	Outlook and Summary

Inhomogeneous condensates in the parity doublet model

Achim Heinz

in collaboration with F. Giacosa and D. H. Rischke

August 30th 2012

Introduction	Chiral Density Wave	Results	Outlook and Summary
0000000	00000	000	
Outline			

Introduction

- Why?
- Mesonic part of the Lagrangian
- The Lagrangian for the baryons

2 Chiral Density Wave

- Implementation
- Grand canonical potential

3 Results

- Chiral limit
- Finite Pion mass

Outlook and Summary

Introduction •000000	Chiral Density Wave	Results 000	Outlook and Summary
Why?			

most works dealing with inhomogeneous condensation do not consider nucleons or vacuum phenomenology

model build with mesonic and baryonic degrees of freedom:

extended linear sigma model and parity doublet model

- includes scalar-, pseudoscalar-, vector- and axialvector-mesons, nucleons and their chiral partners
- decay rates and scattering lengths
- nuclear matter saturation can be achieved

first step towards inhomogeneous condensation \rightarrow chiral density wave (CDW)

Introduction	Chiral Density Wave	Results	Outlook and Summary
•••••	00000	000	
The meson field	ds		

globally $U(3)_R \times U(3)_L$ invariant Lagrangian:

scalar and pseudoscalar fields

$$\Phi = \sum_{a=0}^{3} \phi_{a} t_{a} = (\sigma + \imath \eta_{N}) t^{0} + (\mathbf{a}_{0} + \imath \pi) \cdot \mathbf{t} , \quad \Phi \to U_{L} \Phi U_{R}^{\dagger}$$
$$\Phi^{\dagger} = \sum_{a=0}^{3} \phi_{a} t_{a} = (\sigma - \imath \eta_{N}) t^{0} + (\mathbf{a}_{0} - \imath \pi) \cdot \mathbf{t} , \quad \Phi^{\dagger} \to U_{R} \Phi^{\dagger} U_{L}^{\dagger}$$

vector and axial-vector fields

$$V^{\mu} = \sum_{a=0}^{3} V^{\mu}_{a} t_{a} = \omega^{\mu} t^{0} + \boldsymbol{\rho}^{\mu} \cdot \mathbf{t} , \quad A^{\mu} = \sum_{a=0}^{3} A^{\mu}_{a} t_{a} = f^{\mu}_{1} t^{0} + \mathbf{a}^{\mu}_{1} \cdot \mathbf{t}$$

 $R^{\mu} \equiv V^{\mu} - A^{\mu}$ with $R^{\mu} \rightarrow U_R R^{\mu} U_R^{\dagger}$ and $L^{\mu} \equiv V^{\mu} + A^{\mu}$ with $L^{\mu} \rightarrow U_L L^{\mu} U_L^{\dagger}$

Introduction	Chiral Density Wave	Results	Outlook and Summary
000000	00000	000	
The Lagrangiar	n for the mesons		

$$\begin{split} \mathscr{L}_{M} &= \operatorname{Tr}\left[\left(D_{\mu}\Phi\right)^{\dagger}\left(D^{\mu}\Phi\right) - m^{2}\Phi^{\dagger}\Phi - \lambda_{2}\left(\Phi^{\dagger}\Phi\right)^{2}\right] - \lambda_{1}\left[\operatorname{Tr}\left(\Phi^{\dagger}\Phi\right)\right]^{2} \\ &+ \operatorname{Tr}\left[H\left(\Phi^{\dagger}+\Phi\right)\right] + c\left(\det\Phi^{\dagger} - \det\Phi\right)^{2} \\ &- \frac{1}{4}\operatorname{Tr}\left(L_{\mu\nu}L^{\mu\nu} + R_{\mu\nu}R^{\mu\nu}\right) + \operatorname{Tr}\left[\left(\frac{1}{2}m_{1}^{2} + \Delta\right)\left(L_{\mu}L^{\mu} + R_{\mu}R^{\mu}\right)\right] \\ &+ \frac{1}{2}h_{1}\operatorname{Tr}\left(\Phi^{\dagger}\Phi\right)\operatorname{Tr}\left(L_{\mu}L^{\mu} + R_{\mu}R^{\mu}\right) + h_{2}\operatorname{Tr}\left(\Phi^{\dagger}L^{\mu}L_{\mu}\Phi + \Phi R^{\mu}R_{\mu}\Phi^{\dagger}\right) + 2h_{3}\operatorname{Tr}\left(\Phi R_{\mu}\Phi^{\dagger}L^{\mu}\right) \\ &+ 2h_{3}\operatorname{Tr}\left(\Phi R_{\mu}\Phi^{\dagger}L^{\mu}\right) - \imath\frac{g_{2}}{2}\left(\operatorname{Tr}\left\{L_{\mu\nu}[L^{\mu}, L^{\nu}]\right\} + \operatorname{Tr}\left\{R_{\mu\nu}[R^{\mu}, R^{\nu}]\right\}\right) + \ldots \end{split}$$

spontaneous symmetry breaking, explicit symmetry breaking, trace anomaly.

covariant derivative and field strength tensors : $D^{\mu}\Phi = \partial^{\mu}\Phi - \imath g_{1}(\Phi R^{\mu} - L^{\mu}\Phi)$ $L^{\mu\nu} = \partial^{\mu}L^{\nu} - \imath eA^{\mu}[T_{3}, L^{\nu}] - \{\partial^{\nu}L^{\mu} - \imath eA^{\nu}[T_{3}, L^{\mu}]\}$ $R^{\mu\nu} = \partial^{\mu}R^{\nu} - \imath eA^{\mu}[T_{3}, R^{\nu}] - \{\partial^{\nu}R^{\mu} - \imath eA^{\nu}[T_{3}, R^{\mu}]\}$

model vs	reality - meson sect	or	
0000000			
Introduction	Chiral Density Wave	Results	Outlook and Summary

spontaneous chiral-symmetry breaking requires shift of σ_N and σ_S by their expectation values \rightarrow leads to axial-vector and pseudoscalar mixing

D. Parganlija, P. Kovacs, G. Wolf, F. Giacosa and D. H. Rischke, arXiv:1208.2054 [hep-ph].

	Chiral Density Wave	Results 000	Outlook and Summary
The mirror assi	ignment		

mirror assignment

$$\begin{array}{ll} \psi_{1,R} \rightarrow U_R \ \psi_{1,R} \ , \qquad \psi_{1,L} \rightarrow U_L \ \psi_{1,L}, \\ \psi_{2,R} \rightarrow U_L \ \psi_{2,R} \ , \qquad \psi_{2,L} \rightarrow U_R \ \psi_{2,L} \end{array}$$

baryon Lagrangian

$$\begin{aligned} \mathscr{L}_{B} &= \bar{\psi}_{1,L} \imath \not{D}_{1,L} \psi_{1,L} + \bar{\psi}_{1,R} \imath \not{D}_{1,R} \psi_{1,R} + \bar{\psi}_{2,L} \imath \not{D}_{2,L} \psi_{2,L} + \bar{\psi}_{2,R} \imath \not{D}_{2,R} \psi_{2,R} \\ &- \hat{g}_{1} \left(\bar{\psi}_{1,L} \Phi \psi_{1,R} + \bar{\psi}_{1,R} \Phi^{\dagger} \psi_{1,L} \right) - \hat{g}_{2} \left(\bar{\psi}_{2,L} \Phi^{\dagger} \psi_{2,R} + \bar{\psi}_{2,R} \Phi \psi_{2,L} \right) \\ &+ m_{0} \left(\bar{\psi}_{2,L} \psi_{1,R} - \bar{\psi}_{2,R} \psi_{1,L} - \bar{\psi}_{1,L} \psi_{2,R} + \bar{\psi}_{1,R} \psi_{2,L} \right) \end{aligned}$$

 $D_{1,R}^{\mu} = \partial^{\mu} - \imath c_1 R^{\mu}, \ D_{1,L}^{\mu} = \partial^{\mu} - \imath c_1 L^{\mu}, \ D_{2,R}^{\mu} = \partial^{\mu} - \imath c_2 R^{\mu}, \text{ and } D_{2,L}^{\mu} = \partial^{\mu} - \imath c_2 L^{\mu}.$

not just nucleon N but also its chiral partner N^* chiral eigenstates are not equal to mass eigenstates \Rightarrow mass eigenstates emerge after diagonalization

naive assignment
$$(m_0 = 0)$$
:

 $m_N = m_{\Psi_1} \propto \varphi$ $m_{N^*} = m_{\Psi_2} \propto \varphi$

mirror assignment $(m_0 \neq 0)$:

$$m_{N} = \frac{1}{2} \sqrt{(\hat{g}_{1} + \hat{g}_{2})^{2} \varphi^{2} + 4m_{0}^{2}} + \frac{1}{4} (\hat{g}_{1} - \hat{g}_{2}) \varphi}$$
$$m_{N^{*}} = \frac{1}{2} \sqrt{(\hat{g}_{1} + \hat{g}_{2})^{2} \varphi^{2} + 4m_{0}^{2}} - \frac{1}{4} (\hat{g}_{1} - \hat{g}_{2}) \varphi}$$

Further extension	ons and achievemen	ts	
0000000			
Introduction	Chiral Density Wave	Results	Outlook and Summary

- origin of m_0 term: glueball condensate G_0 or tetraquark condensate χ_0 with $m_0 = aG_0 + b\chi_0$
- πN scattering lengths and decay widths of N^*
- at finite density (mean-field) nuclear matter saturation can be achieved

arXiv:1003.4934, arXiv:1105.5003v1, arXiv:0907.5084, arXiv:1103.3238

Introduction 0000000	Chiral Density Wave ●0000	Results	Outlook and Summary
CDW and ir	nplementation		

Model is simplified to very basic level:

- mesons other than $\sigma, \vec{\pi}, \omega^{\mu}$ are ignored
- higher-order interactions of vector mesons are ignored
- *m*⁰ treated as a constant
- for the moment do not aim to describe vacuum phenomenology
- mean-field approximation

minimal baryonic Lagrangian

$$\begin{split} \mathscr{L} &= \bar{\psi}_1 \imath \partial \psi_1 + \bar{\psi}_2 \imath \partial \psi_2 - g_\omega^{(1)} \bar{\psi}_1 \imath \gamma_\mu \omega^\mu \psi_1 - g_\omega^{(2)} \bar{\psi}_2 \imath \gamma_\mu \omega^\mu \psi_2 \\ &- \frac{1}{2} \hat{g}_1 \bar{\psi}_1 \left(\sigma + \imath \gamma_5 \vec{\tau} \cdot \vec{\pi} \right) \psi_1 - \frac{1}{2} \hat{g}_2 \bar{\psi}_2 \left(\sigma - \imath \gamma_5 \vec{\tau} \cdot \vec{\pi} \right) \psi_2 \\ &+ m_0 \left(\bar{\psi}_2 \gamma_5 \psi_1 - \bar{\psi}_1 \gamma_5 \psi_2 \right) + \mathscr{L}_M \end{split}$$

Introduction	Chiral Density Wave	Results	Outlook and Summary
0000000	○○○○○	000	
The chiral den	sity wave		

Ansatz for chiral density wave:

 $\langle \sigma \rangle \sim \varphi \cos(2 f x) , \qquad \langle \pi_0 \rangle \sim \varphi \sin(2 f x)$

$$\begin{aligned} \mathscr{L}_{\mathcal{B}} = & \bar{\psi}_{1} \imath \partial \!\!\!/ \psi_{1} + \bar{\psi}_{2} \imath \partial \!\!\!/ \psi_{2} + m_{0} \left(\bar{\psi}_{2} \gamma_{5} \psi_{1} - \bar{\psi}_{1} \gamma_{5} \psi_{2} \right) \\ & - \frac{1}{2} \hat{g}_{1} \varphi \bar{\psi}_{1} \left[\cos(2fx) + \imath \gamma_{5} \tau_{3} \sin(2fx) \right] \psi_{1} - \frac{1}{2} \hat{g}_{2} \bar{\psi}_{2} \left[\cos(2fx) - \imath \gamma_{5} \tau_{3} \sin(2fx) \right] \psi_{2} \\ & + \dots \\ & = & \bar{\psi}_{1} \imath \partial \!\!/ \psi_{1} + \bar{\psi}_{2} \imath \partial \!\!/ \psi_{2} + m_{0} \left(\bar{\psi}_{2} \gamma_{5} \psi_{1} - \bar{\psi}_{1} \gamma_{5} \psi_{2} \right) \\ & - \frac{1}{2} \hat{g}_{1} \varphi \bar{\psi}_{1} \exp\left(+ \imath 2 \gamma_{5} \tau_{3} fx \right) \psi_{1} - \frac{1}{2} \hat{g}_{2} \varphi \bar{\psi}_{2} \exp\left(- \imath 2 \gamma_{5} \tau_{3} fx \right) \psi_{2} \\ & + \dots \end{aligned}$$

recall:

 $\exp(\imath a \tau_3) = \cos(a) + \imath \tau_3 \sin(a)$ and $\exp(\imath a \gamma_5 \tau_3) = \cos(a) + \imath \gamma_5 \tau_3 \sin(a)$

arXiv:1102.4049v1

Introduction	Chiral Density Wave	Results	Outlook and Summary
Towards the gra	and canonical poter	tial	

transformation of the fermion fields

$$\begin{split} \bar{\psi}_1 &\to \bar{\psi}_1 \exp[-i\gamma_5 \tau_3 f x], \quad \psi_1 \to \exp[-i\gamma_5 \tau_3 f x]\psi_1 \\ \bar{\psi}_2 &\to \bar{\psi}_2 \exp[+i\gamma_5 \tau_3 f x], \quad \psi_2 \to \exp[+i\gamma_5 \tau_3 f x]\psi_2 \end{split}$$

•
$$\bar{\psi}_{1} \exp[+i\gamma_{5}\tau_{3}2f_{x}]\psi_{1} \rightarrow \bar{\psi}_{1}\psi_{1},$$

• $\bar{\psi}_{2} \exp[-i\gamma_{5}\tau_{3}2f_{x}]\psi_{2} \rightarrow \bar{\psi}_{2}\psi_{2}$
• $\bar{\psi}_{1}\gamma_{\mu}\psi_{1} \rightarrow \bar{\psi}_{1}\gamma_{\mu}\psi_{1},$
• $\bar{\psi}_{2}\gamma_{\mu}\psi_{2} \rightarrow \bar{\psi}_{2}\gamma_{\mu}\psi_{2}$
• $\bar{\psi}_{2}\gamma_{5}\psi_{1} \rightarrow \bar{\psi}_{2}\gamma_{5}\psi_{1},$
• $\bar{\psi}_{1}\gamma_{5}\psi_{2} \rightarrow \bar{\psi}_{1}\gamma_{5}\psi_{2}$
• $\bar{\psi}_{1}i\partial_{\psi}\psi_{1} \rightarrow \bar{\psi}_{1}i\partial_{\psi}\psi_{1} + \bar{\psi}_{1}\gamma_{1}\gamma_{5}\tau_{3}f\psi_{1},$
• $\bar{\psi}_{2}i\partial_{\psi}\psi_{2} \rightarrow \bar{\psi}_{2}i\partial_{\psi}\psi_{2} - \bar{\psi}_{2}\gamma_{1}\gamma_{5}\tau_{3}f\psi_{2}$

 \Rightarrow spacial dependence transformed to an additional momentum dependence

Introduction	Chiral Density Wave	Results	Outlook and Summary
0000000	○○○●○	000	
The mesonic I	agrangian		

$$\begin{split} \mathscr{L}_{M} = &\frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma + \frac{1}{2} \partial_{\mu} \vec{\pi} \partial^{\mu} \vec{\pi} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \\ &+ \frac{1}{2} m^{2} (\sigma^{2} + \vec{\pi}^{2}) - \frac{\lambda}{4} (\sigma^{2} + \vec{\pi}^{2})^{2} + h_{0} \sigma + \frac{1}{2} m_{\omega}^{2} \omega_{\mu} \omega^{\mu} \end{split}$$

 $F_{\mu\nu}=\partial_{\mu}\omega_{\nu}-\partial_{\nu}\omega_{\mu}$ within mean-field approximation:

$$\begin{split} F_{\mu\nu}F^{\mu\nu} &\to 0 \\ \omega_{\mu}\omega^{\mu} \to \bar{\omega}_{0}^{2} \\ \sigma^{2} + \vec{\pi}^{2} \to \varphi^{2} \\ \partial_{\mu}\sigma\partial^{\mu}\sigma + \partial_{\mu}\vec{\pi}\partial^{\mu}\vec{\pi} \to 4f^{2}\varphi^{2} \end{split}$$

$$V_{M} = 2f^{2}\varphi^{2} + \frac{1}{4}\lambda\varphi^{4} - \frac{1}{2}m^{2}\varphi^{2} - h_{0}\varphi - \frac{1}{2}m_{\omega}^{2}\bar{\omega}_{0}^{2}$$

Grand canonical notential							
000000	00000	000					
Introduction	Chiral Density Wave	Results	Outlook and Summary				

$$\begin{split} \frac{\Omega}{V} &= 2f^2\varphi^2 + \frac{1}{4}\lambda\varphi^4 - \frac{1}{2}m^2\varphi^2 - \epsilon\varphi - \frac{1}{2}m_{\omega}^2\bar{\omega}_0^2 \\ &+ \sum_{k=1}^4 \frac{2}{(2\pi)^2}\int d^3p \; \left(\sqrt{\vec{p}^2 + \bar{m}_k(p_1)^2} - \mu^*\right)\Theta\left(\mu^* - \sqrt{\vec{p}^2 + \bar{m}_k(p_1)^2}\right) \end{split}$$

short notation $\mu^*=\mu-{\it g}_\omega\bar\omega_0$

mean meson fields are obtained by minimizing Ω

$$0 \stackrel{!}{=} \frac{\partial(\Omega/V)}{\partial \varphi}$$
, $0 \stackrel{!}{=} \frac{\partial(\Omega/V)}{\partial \bar{\omega}_0}$, $0 \stackrel{!}{=} \frac{\partial(\Omega/V)}{\partial f}$

Introduction 0000000	Chiral Density Wave	Results ●○○	Outlook and Summary
Potential in th	e chiral limit		
$\mu_B = 800 \text{ MeV}, \text{ vac}$	cuum	$\mu_B = 900$ MeV, vacuum $v_{[MeV/fm^3]}$	

 $\mu_B = 1500 \text{ MeV}$

red line: homogeneous condensation green line: inhomogeneous condensation

- homogeneous nuclear matter ground state is possible
- chiral symmetry is not restored, indeed value increases with μ_B
 - increase of g_{ω} : inhomogeneous phase is realized for higher μ_B

Dispersion relation and relative density

 $\mu_B = 1000 \text{ MeV}, \ \varphi = 36.6 \text{ MeV}, \ \bar{\omega}_0 = 30.9 \text{ MeV},$

f = 183.7 MeV, and $p_1 = p_2 = 0$

- $E_k = \sqrt{\vec{p}^2 + \bar{m}_k (p_3)^2}, \ k = 1...4$
- shape remains similar even for high μ_B

0000000	00000	000	Outlook and Summary			
Summary and Outlook						

- parity doublet model favors inhomogeneous condensation
- crystalline phase has a strong parameter dependence
- chiral symmetry will not be restored for asymptotically large μ_B
- extend to more realistic setup
- calculations beyond mean-field
- test further inhomogeneous realizations beside CDW
- . . .