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QCD phase diagram

• Chiral phase transition

• Order parameter 

• 1st order boundary and its end point 
(2nd order)

The phase diagram of dense QCD 5











































Figure 1. Conjectured QCD phase diagram with boundaries that define various
states of QCD matter based on S�B patterns.

The chiral transition is a notion independent of the deconfinement transition. In
section 3.2 we classify the chiral transition according to the S�B pattern.

2.2. Conjectured QCD phase diagram

Figure 1 summarizes our state-of-the-art understanding on the phase structure of QCD
matter including conjectures which are not fully established. At present, relatively firm
statements can be made only in limited cases – phase structure at finite T with small
baryon density (µB ⌧ T ) and that at asymptotically high density (µB � ⇤QCD).
Below we will take a closer look at figure 1 from a smaller to larger value of µB in
order.

Hadron-quark phase transition at µB = 0: The QCD phase transition at finite
temperature with zero chemical potential has been studied extensively in the numerical
simulation on the lattice. Results depend on the number of colours and flavours as
expected from the analysis of e↵ective theories on the basis of the renormalization
group together with the universality [35, 36]. A first-order deconfinement transition
for Nc = 3 and Nf = 0 has been established from the finite size scaling analysis
on the lattice [37], and the critical temperature is found to be Tc ' 270MeV. For
Nf > 0 light flavours it is appropriate to address more on the chiral phase transition.
Recent analyses on the basis of the staggered fermion and Wilson fermion indicate a
crossover from the hadronic phase to the quark-gluon plasma for realistic u, d and s
quark masses [38, 39]. The pseudo-critical temperature Tpc, which characterizes the
crossover location, is likely to be within the range 150MeV� 200MeV as summarized
in section 4.2.

Even for the temperature above Tpc the system may be strongly correlated and
show non-perturbative phenomena such as the existence of hadronic modes or pre-
formed hadrons in the quark-gluon plasma at µB = 0 [28, 40] as well as at µB 6= 0
[41, 42, 43]. Similar phenomena can be seen in other strong coupling systems such as
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Critical region

• Critical point is not point like.

• Susceptibility is enhanced near the critical point.

• We need to evaluate the size of the critical region.

considered as the ‘realistic’ quark mass in this model. 11 However, this conclusion is too hasty. We will see in the
next subsection that the hidden tricritical point still affects the physics near CEP even for mq = 5 MeV.
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FIG. 7. The quark number susceptibility for mq = 0.1 MeV. The value of the susceptibility is divided by that of the massless
free theory. The solid line is the first order transition line. The open circle represent the critical end point for mq = 0.1 MeV.
The filled circle is at (Tt, µt).
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FIG. 8. The quark number susceptibility for mq = 5 MeV. The value of the susceptibility is divided by that of the massless
free theory. The open circle is the critical end point for mq = 5 MeV and the filled circle is at (Tt, µt).

11In this model 〈q̄q〉Λ=1GeV = (−276MeV)3 at T = µ = 0. By using Gell-Mann-Oakes-Renner relation with mπ = 140 MeV,
mΛ=1GeV

q ∼ 4MeV.

�q =
�nb

�µ
=

�2P

�µ2
, Rq = �q/�free

q

Hatta and Ikeda (2003)
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Effective potential

• Effective potential as a function of order parameter

• A Soft mode accompanying the CP is sigma mode?
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Spectral functions near CP

• The soft mode is a linear combination of sigma and 
baryon-number density (particle-hole mode).
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FIG. 7. Spectral functions of the scalar (a) and quark number (b) response functions at the Z2CP with m/Λ = 0.01.
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where function I(ω,q) is given in Appendix B. Then we can define the ratio R of the hydrodynamic spectrum to the
total strength of the scalar susceptibility in the NJL model as

R ≡
χmm(0,0+) − χmm(0+,0)

χmm(0,0+)
=

I(0+,0) − I(0,0+)

I(0+,0)
. (30)

On the other hand, these limits in the symmetric phase result in the same value

χmm(0,0) =
1

2g

(

1

1 − 2gJ0
− 1

)

, (31)

which means no hydrodynamic contribution to the scalar susceptibility there (R = 0). The p–h mode must be
decoupled from χmm in the symmetric phase. Meanwhile we know that the corresponding ratios for the susceptibilities
of the conserved quantities are always unity (R = 1), which can be explicitly seen with the expressions given in
Appendix B.

The ratio R (30) is shown in Fig. 8 as a function of µ along the critical line. We find that even in the O(4) chiral
transition at zero baryon number density (µ = 0) the hydrodynamic spectrum contributes to the divergence by a
finite fraction. This contribution of the hydrodynamic spectrum increases toward the TCP, and eventually gives the
leading divergence at the TCP, where I(0,0+) = I0 = 0 but I(0+, 0) #= 0. This behavior is completely in parallel
with the TDGL approach.

The fact that the p–h mode gives a finite fraction of the divergence at the O(4)CP might be again unexpected from
the viewpoint of the sigma meson as the associated soft mode there. Indeed, the sigma meson spectrum generates
the total divergence when the critical point is approached from the symmetric phase. We should note here that
the mixing of the scalar fluctuation in the broken phase is the origin of the discontinuity of the baryon number and
energy susceptibilities across the boundary and that only the scalar p–h mode with the hydrodynamic character can
couple with the fluctuations of these conserved quantities. Since the transitions between the scalar and other channels
is proportional to M , the p–h spectral strength in the scalar is necessarily of order 1/M2 so as to bring a finite
contribution to χµµ and χTT .

We note that the scalar p–h motion of the NJL model is possible only in medium, but always possible in medium
even in the symmetric phase, where the p–h contribution should be decoupled from the scalar susceptibility. One may
ask the reason for this decoupling of the p–h spectrum. The absorption amplitude of the collective p–h mode with
momentum q by a left–handed quark qL(k) is proportional to a spinor product ūR(k + q)uL(k). In the symmetric
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FIG. 7. Spectral functions of the scalar (a) and quark number (b) response functions at the Z2CP with m/Λ = 0.01.
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Coupling with baryon density

• A coupling between chiral condensate and quark-
number density is essential.

• We have to evaluate the thermodynamic potential 
with the mixing.

D. Son and M. Stephanov, Phys. Rev. D 70, 056001 (2004).

H. Fujii, M. Ohtani Phys.Rev. D70 (2004) 014016
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Effective model near CP

• We introduce new filed φ (baryon-number density 
with appropriate normalization).

• gd is density coupling which is familiar in Walecka 
model (σ-ω model). 

• quark-quark interaction is attractive.

L = �̄[i/� � gs(� + i�5�� · ��) + gd��0]� +
1
2
(�µ�)2 +

1
2
(�µ��)2 +

1
2
(�µ�)2

� a(�2 + ��2)� b(�2 + ��2)2 � m�

2
�2 + c�
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Parameters

• a, b,c and gs are fixed by vacuum physical value 
such as mπ, fπ, Mσ~600 [MeV] and Mq~300[MeV].

• We fix Mφ and vary gd.

• A ratio (gd/Mφ) controls a strength of the mixing. 

L = �̄[i/� � gs(� + i�5�� · ��) + gd��0]� +
1
2
(�µ�)2 +

1
2
(�µ��)2 +

1
2
(�µ�)2

� a(�2 + ��2)� b(�2 + ��2)2 � m�

2
�2 + c�
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Functional-RG

k�k�k[�] =
1
2
Tr

�
k�kRkB

RkB + �(0,2)
k [�]

�
� Tr

�
k�kRkF

RkF + �(2,0)
k [�]

�

classical

quantum�k=0[�] = �[�]

�k=⇤[�] = S[�]

•Rk prevents the propagation of the mode q < k.

C. Wetterich, Phys. Lett. B301, 90 (1993)

: effective potential at scale k�k[�] S[�] +
1

2
Rk�

2

Rk(p) � k2 for p2 << k2

Rk(p) � 0 for p2 >> k2
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How to solve it

• Assume a functional form of the effective action
(Local potential approximation[LPA])

• Solve coupled ordinary differential equations for 
Uk(σn,φm): (grid method)
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Phase Structure

• QCD CP exists for finite gd.

• The position of CP slightly moves to higher T and 
lower µ direction.
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FIG. 18: Dependence of the critical point location on the
strength of the vector-channel interaction.

site to the first one. The QCD critical point might be
absent from the QCD phase diagram if gD is suppressed
by the effective UA(1) restoration at high density. Ac-
tually, only 35% reduction is enough to make the QCD
critical point disappear from the phase diagram. If the
suppression is exponential like gD(µ) = e−µ2/µ2

0gD0 [12],
35% reduction is within a reasonable reach.

Then, one could change the scenario in Fig. 15 by in-
troducing a µ-dependent value for gD. For instance, if
one assumes an exponential ansatz, gD(µ) = e−µ2/µ2

0gD0,
one could find some µ0 that produces a boundary surface
with bending behavior that the first-order transition re-
gion shrinks with increasing µ.

2. Vector-channel interaction

It is not only the UA(1) anomaly term but also the
vector-channel interaction term in Eq. (4) that can affect
the location of the QCD critical point. We remark that
LV does not break chiral symmetry at all, and besides,
the zeroth component corresponds to the density oper-
ator (ψ†ψ)2. Therefore, it is conceivable to expect that
the finite density environment brings about non-zero gV

even though we choose gV to be zero in the vacuum.
There is no constraint at all for the choice of induced

gV at finite density. We have no knowledge on even its
sign. Since we regard gV in the present study as induced
in dense quark matter, the choice of gV has nothing to
do with the vector meson property in the vacuum. [It
might be related to an in-medium modification.] It is
presumably appropriate to measure the strength of gV in
unit of gS, and we just try various values of gV to grasp
a feeling of its effect.

There are two modifications necessary to accommodate
the vector-channel interaction. The condensation energy
should be Ωcond → Ωcond−gVn2

q where we already defined
nq in Eq. (28). At the same time, the quark chemical
potential should be replace by the renormalized one,

µr = µ − 2gVnq , (35)

like the quark mass replaced by the constituent one.
Then, we have to solve the number constraint equation,
nq = −∂ΩPNJL/∂µr, together with the four gap equa-
tions self-consistently. In view of the condensation energy
part, positive gV seems to decrease the free energy for
non-zero nq, but the chemical potential renormalization
overcomes it and the free energy becomes greater. Be-
cause chiral symmetric phase has smaller Mud and thus
larger nq, the vector-channel interaction with gV > 0 de-
lays chiral restoration.

The results are summarized in Fig. 18 in the same way
as in Fig. 17. It is remarkable that the qualitative feature
is quite similar to Fig. 17. Thus, we can draw the same
conclusions as in the case of the UA(1) anomaly term.

The QCD critical point could be absent again in the
case when gV is greater than around 0.206gS. The critical
value turns out to be consistent with the known value in
the two-flavor case [32, 33]. It should be noted that the
normalization of gS in Refs. [32, 33] is different from the
present convention by a factor 2.

This value of critical gV is small as compared to the
empirical value suggested by the Fierz transformation. If
we take care of the effect of the effective UA(1) restora-
tion, as we illustrate in Fig. 17, the critical gV could be
even smaller.

VII. CONCLUSIONS

We have formulated the 2 + 1 flavor PNJL model with
a simple ansatz for the Polyakov loop effective potential.
We first confirmed that our model setup works pretty
well to account for recent results in the zero-density lat-
tice QCD simulation. We then explored our perspective
toward the finite-density QCD phase transition.

The phase diagram in our model study turns out to
have three (crossover) boundaries corresponding to ud-
quark chiral restoration, s-quark chiral restoration, and
deconfinement characterized by the Polyakov loop expec-
tation value. We have also computed the quark number
density and found that its behavior is governed by the u-
quark chiral condensate. Our phase diagram is consistent
with the large Nc argument and, in particular, we iden-
tified the phase region with vanishing Polyakov loop and
nonzero quark number density as the quarkyonic phase.

It would be intriguing to include the diquark conden-
sates to describe a family of the color superconducting
phases. The large Nc argument cannot access physics of
color superconductivity, and thus, nothing so far could
predict the fate of the quarkyonic phase region under
the effect of color superconductivity. One possibility is

cf. NJL with vector

gv = 0
gv = 0.1gs

gv = 0.2gs

gv = 0.3gs

K. Fukushima (2008)
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Potential on the CP

• The flat direction changes to the φ direction with gd 
increasing.
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Fig. 2. The contours of the effective potential near the critical point for different gd. The solid
points show the minimum of the effective potential.

We can see the flat direction is prallel to σ axis.
On the other hand for gd != 0 there is a mixing between σ and ϕ and the

expectation value of ϕ is not zero. The expectation value of ϕ is increased with gd.
The flat direction become a linear combination of σ and ϕ. The σ direction is no
longer special for gd != 0. Since the mixing between σ and ϕ becomes strong, the
flat direction changes to ϕ axis with gd increasing.

3.2. Susceptibility
The information for the size of critical region around QCD critical point is

important for the experiments for a detection of the critical point. In order to find
a bound to the size of the critical region, we calculate a quark-number susceptibility
χq.

The quark number susceptibility is defined as a response of the quark number
density nq:

χq ≡ ∂nq

∂µ
= −∂

2P (T, µ)
∂µ2

. (3.1)

For comparison with the critical region for varying gd, it is convenient to use a

φ[MeV]

σ[MeV]

gd = 0 gd = 0.1gs

gd = 0.2gs gd = 0.3gs

Tuesday, August 28, 12



Susceptibility

• The critical region is drastically expanded with gd.
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Fig. 4. The contour for Rq around critical point. Solid line denote first-order phase boundary. Solid
circle represent critical point

matrix:

M =

(
∂2U
∂σ∂σ

∂2U
∂σ∂ϕ

∂2U
∂ϕ∂σ

∂2U
∂ϕ∂ϕ

)∣∣∣∣∣
σ0,ϕ0

. (3.3)

In Fig. 5 the curvature masses M± at T = Tc are shown as a function of quark
chemical potential for gd = 0 and gd = 0.2gs.
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Fig. 5. Plot of curvature mass M± near the critical point with chemical potential. Left and right
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The left panel of Fig.5 is for gd = 0. At gd = 0, the undiagonal parts of the
mass matrix (3.3) are always zero. Thus we can identify the masses of σ and ϕ
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Curvature masses

• We calculate M+ and M- (eigenvalue of matrix M).

• M- corresponds to curvature of the flat direction.
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Fig. 4. The contour for Rq around critical point. Solid line denote first-order phase boundary. Solid
circle represent critical point

matrix:

M =

(
∂2U
∂σ∂σ

∂2U
∂σ∂ϕ

∂2U
∂ϕ∂σ

∂2U
∂ϕ∂ϕ

)∣∣∣∣∣
σ0,ϕ0

. (3.3)

In Fig. 5 the curvature masses M± at T = Tc are shown as a function of quark
chemical potential for gd = 0 and gd = 0.2gs.
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Fig. 5. Plot of curvature mass M± near the critical point with chemical potential. Left and right
panel are at gd = 0 and gd = 0.2gs respectively.

The left panel of Fig.5 is for gd = 0. At gd = 0, the undiagonal parts of the
mass matrix (3.3) are always zero. Thus we can identify the masses of σ and ϕ

M±
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Fig. 2. The contours of the effective potential near the critical point for different gd. The solid
points show the minimum of the effective potential.

We can see the flat direction is prallel to σ axis.
On the other hand for gd != 0 there is a mixing between σ and ϕ and the

expectation value of ϕ is not zero. The expectation value of ϕ is increased with gd.
The flat direction become a linear combination of σ and ϕ. The σ direction is no
longer special for gd != 0. Since the mixing between σ and ϕ becomes strong, the
flat direction changes to ϕ axis with gd increasing.

3.2. Susceptibility
The information for the size of critical region around QCD critical point is

important for the experiments for a detection of the critical point. In order to find
a bound to the size of the critical region, we calculate a quark-number susceptibility
χq.

The quark number susceptibility is defined as a response of the quark number
density nq:

χq ≡ ∂nq

∂µ
= −∂

2P (T, µ)
∂µ2

. (3.1)

For comparison with the critical region for varying gd, it is convenient to use a

M-
M+
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Curvature mass 

• We see a kind of level repulsion between M+ and 
M- (gd ≠0).

• M- is decreased by the level repulsion.
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Curvature mass

• The contour of M-

• Small M- region is also expanded.
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individually. Because ϕ is decoupled with the chiral modes, the ϕ curvature mass
is constant (∼ 400 [MeV]) for chemical potential while the sigma mass drops below
the ϕ mass and vanishes at the critical point. Beyond the critical point, the σ mass
increases monotonically.

The undiagonal parts of mass matrix (3.3) are non-zero for gd "= 0. Thus we can
no longer identify the masses of σ and ϕ individually; in othre words, these modes
are mixed. In the right panel of Fig. 5 the curvature masses for gd = 0.2gs are shown
as a function of chemical potential. We observe a kind of level repulsion between M+

and M− which is familiar in a perturbation theory in quantum mechanics. Below the
critical chemical potential, M− stays constant (∼ 400 [MeV]). When M+ closes to
M−, M− starts decreasing and vanishes at critical point. Beyond critical point, M−
increased until 340 [MeV] and becomes almost constant. M+ is rising again when
M− closes to the constant value. These are a typical behaviors of the M+ and M−
for gd "= 0.

Note that the masses shown here are not dynamical one. In order to see the
dynamical softening of these modes, we have to calculate a spectral function in FRG
frame work. We would find dissipative zero mode in the space-like region of spectral
function.12)–14)

gd = 0
     200
     300

 260  280  300  320  340
µ[MeV]

 0

 20

 40

 60

 80

 100
T[

M
eV

]

 260  280  300  320  340
µ[MeV]

 0

 20

 40

 60

 80

 100
T[

M
eV

]

 260  280  300  320  340
µ[MeV]

 0

 20

 40

 60

 80

 100
T[

M
eV

]

gd = 0.1gs
     200
     300

 260  280  300  320  340
µ[MeV]

 0

 20

 40

 60

 80

 100

T[
M

eV
]

 260  280  300  320  340
µ[MeV]

 0

 20

 40

 60

 80

 100

T[
M

eV
]

 260  280  300  320  340
µ[MeV]

 0

 20

 40

 60

 80

 100

T[
M

eV
]

gd = 0.2gs
     200
     300

 260  280  300  320  340
µ[MeV]

 0

 20

 40

 60

 80

 100

T[
M

eV
]

 260  280  300  320  340
µ[MeV]

 0

 20

 40

 60

 80

 100

T[
M

eV
]

 260  280  300  320  340
µ[MeV]

 0

 20

 40

 60

 80

 100

T[
M

eV
]

gd = 0.3gs
     200
     300

 240  260  280  300  320
µ[MeV]

 0

 20

 40

 60

 80

 100

T[
M

eV
]

 240  260  280  300  320
µ[MeV]

 0

 20

 40

 60

 80

 100

T[
M

eV
]

 240  260  280  300  320
µ[MeV]

 0

 20

 40

 60

 80

 100

T[
M

eV
]

 240  260  280  300  320
µ[MeV]

 0

 20

 40

 60

 80

 100

T[
M

eV
]

 240  260  280  300  320
µ[MeV]

 0

 20

 40

 60

 80

 100

T[
M

eV
]

 240  260  280  300  320
µ[MeV]

 0

 20

 40

 60

 80

 100

T[
M

eV
]

Fig. 6. The contour of M− for each gd.

In Fig 6, we show a contour map for M− for varying gd. For each gd, M− closes
to zero in the vicinity of the critical point. In the follwing we call the region in
which M− < 200 [MeV] the softening region. The softening region almost coincide
with the critical region .i.e. the region in which Rq > 3in4. The softening of the

gd = 0 gd = 0.1gs

gd = 0.2gs

gd = 0.3gs
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Summary and outlook

• We have considered the QCD critical point and its 
critical region.

• We have considered the model which includes the 
baryon-density mode as well as chiral modes.

• We have seen the expansion of critical region with 
the coupling increasing.

• We will calculate the higher moments of the quark or 
charge number density.
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• Thank you for your attendtion
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