Effect of short-range interactions on the quantum critical behavior of spinless fermions on the honeycomb lattice

D. Mesterházy^a, J. Berges^a and L. von Smekal^b

^a Institut f
ür Theoretische Physik, U Heidelberg
 ^b Institut f
ür Kernphysik, TU Darmstadt

ruprecht-karls-UNIVERSITÄT HEIDELBERG

Graphene - single layer of carbon atoms on a bipartite honeycomb lattice

Tight-binding model:

$$H_{0} = -t \sum_{\langle i,j \rangle,\sigma} \left(u_{\sigma}^{\dagger}(\mathbf{r}_{i})v_{\sigma}(\mathbf{r}_{j}) + \text{H.c.} \right)$$
$$E(\mathbf{k}) = \pm t \left| \sum_{i=1,2,3} e^{i\mathbf{k}\cdot\boldsymbol{\delta}_{i}} \right|$$

Wallace, Phys. Rev. 71, 622 (1947)

Two inequivalent Dirac points at corners of first Brillouin zone (BZ) with massless linear dispersion

 $E(k) = \pm v_F k$, $k/\Lambda \ll 1$

Relativistic wave equation for massless spin- $\frac{1}{2}$ particles

Kotov et al., arXiv:1012.3484

Low-energy excitations and symmetry properties

$$N_f = 2$$
 flavors of massless Dirac fermions ($v_F = 1$)

 $\mathcal{L} = \bar{\Psi}^a i \gamma_\mu \partial_\mu \Psi^a$

Symmetry properties:

- 1) Lorentz symmetry (C_{3v} lattice symmetry)
- 2) SU(2) chiral symmetry with generators γ_3 , γ_5 , and $\gamma_{35} = \frac{i}{2}[\gamma_3, \gamma_5]$
- 3) Time reversal symmetry, orthogonal $T = i\gamma_2 K$ (exact), and symplectic $S = -i\gamma_0\gamma_1 K$

Herbut, Juričić, and Roy, Phys. Rev. B **79**, 085116 (2009) Beenakker, Rev. Mod. Phys. **80**, 1337 (2008)

 \Rightarrow extended $U(2N_f)$ flavor symmetry

Electron-electron interactions

Dielectric medium plays a significant role for the interactions \Rightarrow screening effects

Suspended graphene at charge neutral point – massless Dirac fermions interacting via Coulomb interactions

Renormalization of Fermi velocity due to Coulomb interactions:

Elias et al., Nature Phys. 7, 701 (2007)

Possible many-body nature of $n = 0, \pm 1$ (anomalous) integer quantum Hall states

Abanin et al., Phys. Rev. Lett. **98**, 196806 (2007) Jiang et al., Phys. Rev. Lett. **99**, 106802 (2007)

Short-range repulsive interactions

Are the quantum critical properties can be controlled by short-range interactions?

$$H = H_0 + U \sum_i n_{i\uparrow} n_{i\downarrow} + V_1 \sum_{\langle i,j \rangle} (n_i - 1)(n_j - 1) + V_2 \sum_{\langle \langle i,j \rangle \rangle} (n_i - 1)(n_j - 1)$$

Raghu et al., Phys. Rev. Lett. **100**, 156401 (2008) Herbut, Phys. Rev. Lett. **97**, 146401 (2006)

Several types of instabilities discussed in the literature, e. g. chirally broken phases, AF phase, superconducting long-range order etc.

1) Staggered sublattice potential (CDW)

 $\Delta_3 \sim \langle \bar{\Psi}^a \gamma_3 \Psi^a \rangle$

flavor singlet, breaks chiral $SU(2) \rightarrow U(1)$

Semenoff, Phys. Rev. Lett. 53, 2449 (1984)

2) Topological insulator

$$\Delta_{35} \sim i \langle \bar{\Psi}^a \gamma_{35} \Psi^a \rangle$$

breaks TRS, invariant under extended flavor symmetry $U(2N_f)$

Haldane, Phys. Rev. Lett. 61, 2015 (1988)

3) Kekulé hopping texture

 $\Delta \sim i \langle \bar{\Psi}^a \left(\cos \alpha + \gamma_5 \sin \alpha \right) \Psi^a \rangle$

TRS invariant, but breaks chiral $SU(2) \rightarrow U(1)$

Hou et al., Phys. Rev. Lett. 98, 186809 (2007)

	\mathcal{P}	С	${\mathcal T}$
$iar{\Psi}\Psi$	+	+	+
$i \bar{\Psi} \gamma_{35} \Psi$	+	+	_
$i \bar{\Psi} \gamma_{\mu} \Psi$	$i \bar{\Psi} \hat{\gamma}_{\mu} \Psi$	$-i\bar{\Psi}\gamma_{\mu}\Psi$	$i ar{\Psi} \gamma_\mu \Psi$

Transformation properties of fermionic bilinears, $\hat{\gamma}_{\mu} = (\gamma_0, -\gamma_1, -\gamma_2)$

	$\mathcal{T} = i\gamma_2 K$	$\mathcal{S} = -i\gamma_0\gamma_1 K$	$\mathcal{TS} = i\gamma_{35}$
$i ar{\Psi} \Psi$	+	+	+
$\bar{\Psi}\gamma_3\Psi$	+	_	_
$\bar{\Psi}\gamma_5\Psi$	+	_	_
$i\bar{\Psi}\gamma_{35}\Psi$	—	_	+
$i \bar{\Psi} \gamma_{\mu} \Psi$	+	+	+

Transformation properties of fermionic bilinears under antiunitary symmetries

Functional renormalization group

Exact renormalization group equation

$$\partial_t \Gamma_k = \frac{1}{2} \operatorname{STr} \left\{ \partial_t R_k \left(\Gamma_k^{(1,1)} + R_k \right)^{-1} \right\} \ , \quad \partial_t \equiv k \frac{\partial}{\partial k}$$

Wetterich, Phys. Lett. B 301, 90 (1993)

Include fluctuations successively via the regulator function R_k

Starting from some microscopic model $\Gamma_{k=\Lambda} \simeq S$ we solve the flow equation to obtain scale-dependent effective average action Γ_k

Truncate Γ_k to arrive at a finite system of coupled differential equations

Systematic derivative expansion of effective average action Γ_k

(2+1)-dimensional Thirring model

Classical action with repulsive short-range interactions, invariant under $U(2N_f)$ and discrete symmetries

 $U(2N_f)$ -complete fermionic model, N_f Dirac fermions

$$\Gamma_k[\bar{\Psi},\Psi] = \int_x \left\{ \bar{\Psi}^a i \partial\!\!\!/ \Psi^a + \frac{\bar{g}_k}{2N_f} \left(\bar{\Psi}^a \gamma_\mu \Psi^a \right)^2 + \frac{\bar{\tilde{g}}_k}{2N_f} \left(\bar{\Psi}^a \gamma_{35} \Psi^a \right)^2 \right\}$$

Janssen & Gies, Phys. Rev. D 82, 085018 (2010)

Two types of instabilities that are characterized by:

Nambu-Jona-Lasinio (NJL) and Thirring channel

(2+1)-dimensional Thirring model – continued

Competition between NJL- and Thirring-channel in fermionic RG

Janssen & Gies, arXiv:1208.3327 (2012)

\Rightarrow NJL-type interaction dominates at small N_f

SU(N) matrix Yukawa model

Collective matrix field Φ via Hubbard-Stratonovich transformation

Effective average action Γ_k with $U(2N_f)$ symmetry, $N=2N_f$ species of Weyl spinors

$$\Gamma_k = \int_x \left\{ Z_{F,k} \,\bar{\psi}^a i \partial \!\!\!/ \psi^a + \frac{1}{2} Z_{B,k} \operatorname{tr} \left(\partial_\mu \Phi \right)^2 + i \bar{h}_k \,\bar{\psi}^a \Phi_{ab} \psi^b + V_k(\Phi) \right\}$$

Wavefunction renormalization

$$\partial_t Z_{F,k} \neq 0 , \quad \partial_t Z_{B,k} \neq 0$$
$$\eta_F = -\partial_t \ln Z_{F,k} , \quad \eta_B = -\partial_t \ln Z_{B,k}$$

SU(N) matrix Yukawa model – continued

Effective average potential $V_k(\Phi)$ function of U(N) invariants $\sim \operatorname{tr} \Phi^n$

 $V_k(\Phi) \equiv V_k(\sigma, \rho)$

$$\sigma = \operatorname{tr} \Phi \ , \quad \rho = \frac{1}{2} \operatorname{tr} \left(\Phi - \frac{1}{N} \right)^2 \quad (\text{exact for } N = 2)$$

 $\Rightarrow N = 2$: spinless fermions on the honeycomb lattice

Fluctuations only in ρ -channel ($\sigma = 0$) relevant for the $SU(2) \rightarrow U(1)$ chiral phase transition

$$V_k(\sigma = 0, \rho) = \bar{m}_k^2 \left(\rho - \rho_{0,k}\right) + \sum_{n=2} \frac{\lambda_{n,k}}{n!} \left(\rho - \rho_{0,k}\right)^n$$

1) Symmetric regime: $\rho_{0,k} = 0$

2) χ SB regime: k-dependent minimum $ho_{0,k}
eq 0$ and $ar{m}_k^2 = 0$

N=2 renormalization group flow

N = 2 renormalization group flow in the vicinity of the quantum critical point

(a) Dimensionless renormalized couplings ϵ , λ_2 , and λ_3

and

(b) Boson and fermion anomalous dimensions η_B and η_F

${\cal N}=2$ critical couplings

N = 2 critical couplings for different orders in the series expansion

	4th order	6th order	8th order	10th order
ϵ_*	0.4842	0.5242	0.5424	0.5288
$\lambda_{2,*}$	10.7678	10.3744	10.1573	10.3210
$\lambda_{3,*}$		-48.5405	-73.0962	-54.6552
$\lambda_{4,*}$			-1956.82	-485.084
$\lambda_{5,*}$				219713
h_{*}^{2}	12.8622	12.9203	12.9438	12.9264

 \Rightarrow Relavant couplings stable!

N = 2 critical exponents for different orders in the series expansion

	4th order	6th order	8th order	10th order		
η_B	0.989	0.999	1.003	1.000		Gross-Neveu (FRG)
η_F	0.223	0.211	0.207	0.210		
ν	1.922	1.936	1.791	1.874	η_B	0.561
γ	1.942	1.939	1.786	1.875	η_F	0.066
β	1.911	1.935	1.793	1.874	ν	0.961
					γ	1.384
					β	0.745

Rosa et al., Phys. Rev. Lett. **86**, 958 (2001) Höfling et al., Phys. Rev. B **66**, 205111 (2002)

 \Rightarrow Large values for the anomalous dimensions!

N=2 matrix Yukawa model is characterized by large anomalous dimensions

Similar properties have been found in a single Dirac-cone model for the semimetal-superfluid transition

 \Rightarrow Second order phase transition $\eta_B\simeq 0.75$ and $1.75,\,\eta_F\simeq 0.25$

Obert et al., Ann. Phys. 523, 621 (2011)

Compact three-dimensional QED $\eta_A = 1$ due to gauge invariance

Herbut and Tesanovic, Phys. Rev. Lett. **76**, 4588 (1996) Hove and Sudbo, Phys. Rev. Lett. **84**, 3426 (2000)

 \Rightarrow Up to now open question if these non-trivial properties realized in suspended graphene!

Need simulations of the extended Hubbard model on the honeycomb lattice – ultracold gases?

Outlook

 \Rightarrow Critical properties of the short-range repulsive interactions on the honeycomb lattice appear to be rather special – *strong fluctuations*!

Is graphene N = 4 with unscreened Coulomb interactions controlled by the short-range NJL-type quantum critical point? \Rightarrow Would be interesting to find some screening effect at the charge neutral point!

Renormalization of Fermi velocity

What about *transport properties?* Müller et al., Phys. Rev. Lett. **103**, 025301 (2009)