Inhomogeneous phases

in low-dimensional strongly interacting matter

Michael Thies, Theorie III, FAU Erlangen

1) Abelian Skyrme crystals in 1+1 d chirally symmetric models

2) Soliton crystal phases in Gross-Neveu models and conducting polymers

Hirschegg, August 30, 2012

1) Abelian Skyrme crystals in 1+1 d chirally symmetric models

Massless Dirac fermions in 1+1 d

$$\mathcal{L}_{0} = \bar{\psi}i\partial\!\!\!/\psi \qquad (\partial\!\!\!/ = \gamma^{\mu}\partial_{\mu})$$
$$\gamma_{5} = \gamma^{0}\gamma^{1}, \quad \{\gamma_{5}, \gamma^{\mu}\} = 0, \quad \gamma_{5}^{2} = 1$$

"Chirality": Left/right movers

Boost with rapidity ξ : "Helicity" 1/2

$$\psi_R \to e^{\xi/2} \psi_R, \quad \psi_L \to e^{-\xi/2} \psi_L$$

$$\mathcal{L}_{0} = \bar{\psi}_{R} i \partial \!\!\!/ \psi_{R} + \bar{\psi}_{L} i \partial \!\!\!/ \psi_{L}$$

 $U(1)_R \otimes U(1)_L$ chiral symmetry

$$\psi_R \to e^{i\beta}\psi_R, \quad \psi_L \to e^{i\alpha}\psi_L$$

Chirally invariant interactions?

i) Four-fermion interaction

$$\mathcal{L} = \bar{\psi}i\partial\!\!\!/\psi + \frac{g^2}{2} \left[\left(\bar{\psi}\psi \right)^2 + \left(\bar{\psi}i\gamma_5\psi \right)^2 \right]$$

 \cong Nambu–Jona-Lasinio model (1961) in 1+1 dimensions (NJL₂)

- 1+1 dimensions: $[\psi] = L^{-1/2}$, $[g^2] = 1$ renormalizable
- U(N) flavor symmetry: $N \to \infty$, $Ng^2 = \text{const.}$
- asymptotic freedom, no confinement

ii) SU(N) gauge interactions

$$\mathcal{L} = \bar{\psi} i D \!\!\!/ \psi - \frac{1}{2} \mathrm{Tr} F_{\mu\nu} F^{\mu\nu}$$

 $D_{\mu} = \partial_{\mu} + igA_{\mu}, \qquad F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + ig[A_{\mu}, A_{\nu}]$

't Hooft model (1974) \cong QCD₂

- 1+1 dimensions: $[A_{\mu}] = 1$, [g] = M super-renormalizable
- SU(N) color: $N \to \infty$, $Ng^2 = const$.
- confinement of quarks

Why large N limit? SSB of continuous symmetry viable in 1+1 dimensions. Semiclassical methods become exact (here: relativistic Hartree-Fock).

NJL₂ model

Menu:

Vacuum \rightarrow mesons \rightarrow baryons \rightarrow cold matter \rightarrow hot dense matter

Hartree-Fock vacuum

$$\left(-i\gamma_5\partial_x + \gamma^0 S + i\gamma^1 P\right)\psi_\alpha = \epsilon_\alpha\psi_\alpha$$

Two condensates

Mesons

RPA \rightarrow scalar σ ($M_{\sigma} = 2m$), pseudoscalar π ($M_{\pi} = 0$) \cong Goldstone boson Unlike in 3+1 d, there are also massless "Goldstone baryons" • Baryons and cold matter

Key: Global and local chiral rotations

Vacuum Dirac-Hartree-Fock equation

$$\left(-i\gamma_5\partial_x + \gamma^0 m e^{i\varphi\gamma_5}\right)\psi = \epsilon\psi$$

• Global chiral rotation

$$\psi = e^{-i\alpha\gamma_5}\tilde{\psi}$$

$$\left(-i\gamma_5\partial_x + \gamma^0 m e^{i(\varphi-2\alpha)\gamma_5}\right)\tilde{\psi} = \epsilon\tilde{\psi}$$

Chiral vacuum angle φ is irrelevant

• Local chiral rotation $\alpha \rightarrow \alpha(x)$

$$\left(-i\gamma_5\partial_x - \alpha'(x) + \gamma^0 m e^{i(\varphi - 2\alpha(x))\gamma_5}\right)\tilde{\psi} = \epsilon\tilde{\psi}$$

Break translational invariance and generate unwanted vector potential

Interesting special case

$$\alpha = qx, \qquad \alpha' = q$$

Condensate assumes helical structure — spectrum shifted rigidly

$$(-i\gamma_5\partial_x + \gamma^0 m e^{-2iqx\gamma_5})\tilde{\psi} = (\epsilon + q)\tilde{\psi}$$
$$S(x) = m\cos 2qx, \qquad P(x) = -m\sin 2qx$$

New Hartree-Fock solution of the chiral Gross-Neveu model — physics?

Role of Dirac sea: Chiral anomaly

Evaluate fermion density and energy density, using cutoff $E > -\Lambda/2$

• Vacuum: Momentum cutoff $\pm \Lambda/2$ Fermion density

$$\frac{\rho_0}{N} = \int^{\Lambda} \frac{dk}{2\pi} = \frac{\Lambda}{2\pi}$$

Energy density

$$\frac{\mathcal{E}_0}{N} = -\int^{\Lambda} \frac{dk}{2\pi} \sqrt{k^2 + m^2} = -\frac{\Lambda^2}{8\pi} - \frac{m^2}{4\pi} - \frac{m^2}{2\pi} \ln \frac{\Lambda}{m}$$

• Chirally twisted case: Momentum cutoff $\pm \Lambda'/2$ with $\Lambda' = \Lambda + 2q$ Fermion density

$$\frac{\rho}{N} = \int^{\Lambda'} \frac{dk}{2\pi} = \frac{\rho_0}{N} + \frac{q}{\pi}$$

Energy density

$$\frac{\mathcal{E}}{N} = -\int^{\Lambda'} \frac{dk}{2\pi} \left(\sqrt{k^2 + m^2} - q\right) = \frac{\mathcal{E}_0}{N} + \frac{q^2}{2\pi}$$

Mimics massless Fermi gas with $k_f = q$

Resulting Hartree-Fock solution at finite density: Crystal with helical order parameter — chiral spiral (Schön 2000)

Properties

- Topological baryon number (Abelian Skyrmion and Skyrme crystal)
- Massless baryons ($L \to \infty$)
- Chiral spiral is true ground state of dense matter

$$S(x) = m \cos 2k_f x, \qquad P(x) = -m \sin 2k_f x$$

Compare energy density with homogeneous solutions

• Fermion density spatially constant — result of axial current conservation

$$0 = \partial_{\mu} \langle j_5^{\mu} \rangle = \partial_x \langle j_5^1 \rangle = \partial_x \langle \psi^{\dagger} \psi \rangle$$

• Translational and chiral symmetries broken, screw symmetry unbroken

$$P + k_f Q_5$$

 Mesons in dense matter ↔ RPA on chiral spiral ground state: Only one gapless mode, pion-phonon hybrid (Riedl 2001)

• Hot dense matter

Phase diagram of the NJL₂ model?

Hartree-Fock at finite (T, μ) : Start from finite temperature, $\mu = 0$ homogeneous Fermi gas

$$(-i\gamma_5\partial_x + \gamma^0 m(T))\psi_\alpha = \epsilon_\alpha\psi_\alpha, \qquad m(T) = -Ng^2\sum_\alpha \bar{\psi}_\alpha\psi_\alpha \frac{1}{e^{\beta\epsilon_\alpha} + 1}$$

Local chiral rotation

$$\psi(x) \to e^{i\mu x\gamma_5}\psi(x)$$

Chiral spiral condensate with radius m(T) and spatial period π/μ . Shift in spectrum by $-\mu$ generates chemical potential Radius depends only on T, pitch on μ

Renormalized grand canonical potential and fermion density

$$\psi(T,\mu)|_{\text{spir}} = \psi(T,0) - N \frac{\mu^2}{2\pi}$$

 $\rho(T,\mu)|_{\text{spir}} = N \frac{\mu}{\pi}$

Anomaly is UV effect \rightarrow no T-dependence

't Hooft model

Hartree-Fock approach — what is different?

- Linear Coulomb potential, no transverse gluons
- Non-covariant momentum dependence of fermion self-energy (numerical)
- Chiral condensate not related to dynamical mass (Zhitnitskii)

$$\langle \bar{q}q \rangle = -\frac{N}{\sqrt{12}} \left(\frac{Ng^2}{2\pi}\right)^{1/2}$$

• Confinement in independent particle picture: divergent p-independent part of fermion self-energy

• Infinite tower of mesons ($q\bar{q}$ states)

 Goldstone boson, massless baryons and chiral spiral identical to NJL₂ model — interaction invariant under local chiral rotations. Universal behavior

• Analytic results confirmed by numerical Hartree-Fock studies on a lattice (Salcedo, Levit, Negele 1990, Bringoltz 2009)

 \bullet Massive model: LO chiral corrections \rightarrow universal description in terms of sine-Gordon model (Salcedo et al. 1990, Schön 2000)

(Bringoltz 2009)

Finite temperature 't Hooft model

Large N limit: No temperature dependence to LO in 1/NReason: Divergent quark self-energy (confinement)

No restoration of chiral symmetry — phase diagram in (μ, T) plane not universal

Upshot

• Universal behavior at T = 0 and near the chiral limit (sine-Gordon)

 Chiral symmetry governs mesons, baryons and dense matter in a radical way not seen in 3+1 d

• An Abelian version of Skyrme's picture is realized in the large N limit of a class of 1+1 dimensional models

2) Soliton crystal phases in Gross-Neveu models

and conducting polymers

Lagrangian (Gross, Neveu 1974)

$$\mathcal{L} = \bar{\psi}i\partial\!\!\!/\psi + \frac{g^2}{2}\left(\bar{\psi}\psi\right)^2$$

Similar to NJL₂ model, but only discrete Z_2 chiral symmetry

$$\psi \to \gamma_5 \psi, \qquad \overline{\psi} \psi \to -\overline{\psi} \psi$$

Vacuum: SSB, dynamical fermion mass S(x) = m

Relativistic version of Peierls instability (Peierls 1955)

$$\mathcal{E}_0(m) - \mathcal{E}_0(0) = -\frac{Nm^2}{4\pi}$$

Baryons

• Kink-antikink (Dashen, Hasslacher, Neveu 1975)

• Kink (Callan, Coleman, Gross, Zee) — reflection of Z₂ chiral symmetry

Soliton crystal

- \bullet Low density limit \rightarrow array of isolated baryons
- Peierls instability

How to find self-consistent potential? How to solve Hartree-Fock equations?

$$(-i\gamma_5\partial_x + \gamma^0 S)\psi_\alpha = \epsilon_\alpha\psi_\alpha, \qquad S - m_0 = -Ng^2\sum_\alpha^{0} \bar{\psi}_\alpha\psi_\alpha$$

CCGZ kink

• Distinguishing feature: reflectionless

Lattice of such kinks and antikinks

$$\sum_{n=-\infty}^{\infty} (-1)^n \tanh(x+an) = C \operatorname{sn}(Bx,\kappa)$$

Dirac equation can be reduced to Lamé equation and solved exactly in terms of Jacobi elliptic functions (Whittaker, Watson)

• Distinguishing feature: finite band potential

Principal result: In the Gross-Neveu model the most general Dirac potential S(x) leading to Lamé equation (3 parameter family) yields self-consistency for all T, μ, γ

Examples of shapes of S(x) and fermion density (T = 0)

Phase diagram:

Expect 3 different phases: massless Fermi gas, massive Fermi gas, soliton crystal

Phase diagram of the Gross-Neveu model in the chiral limit (Schnetz, Urlichs 2003/04)

Comparison of NJL₂ and Gross-Neveu phase diagrams

NJL₂

 GN_2

22

Relationship between GN₂ model and conducting polymers

trans-polyacetylene (CH) $_x$ — quasi one-dimensional system

Unstable with respect to dimerization

Quantum mechanical model based on 1d lattice, electrons and phonons (Su, Schrieffer, Heeger 1979); Nobel prize in chemistry 2000 for Heeger, MacDiarmid, Shirakawa for conducting polymers

SSH Hamiltonian

$$H = \sum_{n} \left(\frac{p_n^2}{2M} + \frac{K}{2} (u_{n+1} - u_n)^2 \right) - \sum_{n,s} \left(t_0 - \alpha (u_{n+1} - u_n) \right) \left(c_{n+1,s}^{\dagger} c_{n,s} + c_{n,s}^{\dagger} c_{n+1,s} \right)$$

- Hopping amplitude linearized in $(u_{n+1} u_n)$
- Neglect kinetic energy of (CH) monomers (adiabatic approximation)
- Staggered displacement field $\phi_n = (-1)^n u_n$ is order parameter for dimerization (two degenerate ground states)

Half filled band: Gap at the Fermi surface (Peierls instability)

Electron spectra

Relation to relativistic field theory? Shift momenta by $\pm k_f = \pm \frac{\pi}{2a}$

Continuum theory (Brazovskii; Takayama, Lin-Liu, Maki)

$$H = \int dx \sum_{s} \Psi_{s}^{\dagger}(x) \left(-iv_{f}\sigma_{3}\partial_{x} + \sigma_{1}\Delta(x) \right) \Psi_{s}(x) + \frac{4K}{Mg^{2}} \int dx \Delta^{2}(x)$$

Spinor Ψ_s : Components ψ_1, ψ_2 correspond to fermions near $\pm k_f$ Minimize the g.s. energy

$$\begin{pmatrix} -iv_f \partial_x & \Delta(x) \\ \Delta(x) & iv_f \partial_x \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} = \epsilon \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$$

Identical to Bogoliubov-de Gennes equations for 1d superconductors — closely related to Dirac-Hartree-Fock equations for Gross-Neveu model

Dictionary (Bishop, Campbell)

 $v_f \simeq c$ band width \simeq cutoff spin \simeq flavor (N = 2) half – filled band \simeq Dirac sea dimerization \simeq chiral symmetry breaking doping \simeq vary fermion number Where is the 4-fermion interaction?

Two equivalent formulations of Gross-Neveu model

$$\mathcal{L} = \bar{\psi}i\partial\!\!\!/\psi + \frac{g^2}{2} \left(\bar{\psi}\psi\right)^2$$
$$\frac{\partial\mathcal{L}}{\partial\bar{\psi}} = 0 \quad \rightarrow \quad \left(i\partial\!\!\!/ + g^2\bar{\psi}\psi\right)\psi = 0$$

Auxiliary scalar field (Hubbard-Stratonovitch transformation)

$$\mathcal{L} = \bar{\psi}i\partial\!\!\!/\psi + g\sigma\bar{\psi}\psi - \frac{1}{2}\sigma^2$$

Euler-Lagrange equations

$$\frac{\partial \mathcal{L}}{\partial \bar{\psi}} = 0 \quad \rightarrow \quad (i\partial \!\!\!/ + g\sigma) \psi = 0$$
$$\frac{\partial \mathcal{L}}{\partial \sigma} = 0 \quad \rightarrow \quad \sigma = g \bar{\psi} \psi$$

Phonon field corresponds to σ — equivalence only in the adiabatic limit

Role of DHN baryons in trans-polyacetylene?

(S, Q)

Kink or antikink $S(x) = \pm \tanh(x)$: Domain wall defect — change from a) to b) over distance of 5-7 monomers ("Soliton")

Fractional fermion number of the kink ($N_f = n - N/2$) shows up through unnatural spin-charge assignments in polymers (Jackiw, Schrieffer)

Kink-antikink baryon: "polaron" — natural spin-charge assignments (S, Q)

*) "Bipolarons" ($Q = \pm 2$) dissociate into kink-antikink pair in *trans*-PA (cf. limit $y \rightarrow 1$ of DHN baryon)

[†]) "Exciton" is excited state (charge or fermion number 0)

Polaron crystal Brazovskii (1980), Horovitz (1981) identical to baryon crystal in Gross-Neveu model

• Massive Gross-Neveu model?

cis-polyacetylene: Configuration c) has lower energy than d)

Theory by Brazovskii, Kirova (1981) equivalent to massive Gross-Neveu model

Polarons and bipolarons correspond to baryons

Parallel worlds

Mertsching and Fischbeck (1981) The incommensurate Peierls phase of the quasi-one dimensional Fröhlich model with a nearly half-filled band Machida and Nakanishi (1984) Superconductivity under a ferromagnetic molecular field ($ErRh_4B_4$)

Dictionary

Dirac HF equation ultrarel. kinematics chiral condensate chemical potential baryon density

- Bogoliubov-DeGennes equation
- lin. dispersion at Fermi surface
- Cooper pair condensate
- magnetic field
- spin polarization

1.6

Revised phase diagram of the massive Gross-Neveu model (Schnetz, Urlichs 2006)

Phase diagram of the massive NJL₂ model (Boehmer, Fritsch, Kraus 2009)

old

Interpolating between Gross-Neveu and NJL₂ models (Boehmer 2009)

$$\mathcal{L} = \bar{\psi}i\partial\!\!\!/\psi + \frac{g^2}{2}\left(\bar{\psi}\psi\right)^2 + \frac{G^2}{2}\left(\bar{\psi}i\gamma_5\psi\right)^2$$

$$\xi = \frac{\pi}{N} \left(\frac{1}{G^2} - \frac{1}{g^2} \right)$$

36