The Role of Fluctuations in the Phase Diagramm of QC₂D Functional Methods

Naseemuddin Khan, Jan M. Pawlowski, Michael Scherer, Fabian Rennecke

University of Heidelberg

QCD meets Cold Atoms - Episode III 26th August 2012

$\mathsf{QC}_2\mathsf{D}$

 ${\, \bullet \,}$ no sign problem \rightarrow compare with lattice results

$\mathsf{QC}_2\mathsf{D}$

 ${\, \bullet \,}$ no sign problem \rightarrow compare with lattice results

QC_2D

- ullet no sign problem ightarrow compare with lattice results
- $\bullet\,$ colour neutral bound states of two quarks $\rightarrow\,$ phases of superfluidity easily acessible

QC_2D

- ullet no sign problem ightarrow compare with lattice results
- $\bullet\,$ colour neutral bound states of two quarks $\rightarrow\,$ phases of superfluidity easily acessible

QC_2D

- ullet no sign problem ightarrow compare with lattice results
- $\bullet\,$ colour neutral bound states of two quarks $\rightarrow\,$ phases of superfluidity easily acessible
- impact of baryons on the phase diagram

Motivation degrees of freedom

Motivation degrees of freedom

Motivation degrees of freedom

Features of QC₂D

pseudoreality of $SU(2)_c$ gauge group generators: $t_a^* = t_a^T = -t_2 t_a t_2$

• antiunitarity of Dirac operator: $D^* = -t_2 C \gamma_5 D \gamma_5 C t_2$

- antiunitarity of Dirac operator: $D^* = -t_2 \, C \gamma_5 D \gamma_5 C t_2$
- extended flavour symmetry:

$$SU(N_f)_L \times SU(N_f)_R \times U(1)_B \rightarrow SU(2N_f)$$

- antiunitarity of Dirac operator: $D^* = -t_2 \, C \gamma_5 D \gamma_5 C t_2$
- extended flavour symmetry:

$$SU(N_f)_L \times SU(N_f)_R \times U(1)_B \rightarrow SU(2N_f)$$

- antiunitarity of Dirac operator: $D^* = -t_2 \, C \gamma_5 D \gamma_5 C t_2$
- extended flavour symmetry:

$$SU(N_f)_L \times SU(N_f)_R \times U(1)_B \rightarrow SU(2N_f)$$

$$\mathcal{L}_{\mathsf{QC}_{2}\mathsf{D}} = \psi_{\mathsf{L}}^{\dagger} i \sigma_{\mu} D_{\mu} \psi_{\mathsf{L}} + \psi_{\mathsf{R}}^{\dagger} i \sigma_{\mu}^{\dagger} D_{\mu} \psi_{\mathsf{R}}$$

- antiunitarity of Dirac operator: $D^* = -t_2 \, C \gamma_5 D \gamma_5 C t_2$
- extended flavour symmetry:

$$SU(N_f)_L \times SU(N_f)_R \times U(1)_B \to SU(2N_f)$$

$$\mathcal{L}_{\mathsf{QC}_{2}\mathsf{D}} = \psi_{\mathsf{L}}^{\dagger} i \sigma_{\mu} D_{\mu} \psi_{\mathsf{L}} + \psi_{\mathsf{R}}^{\dagger} i \sigma_{\mu}^{\dagger} D_{\mu} \psi_{\mathsf{R}} = \Psi^{\dagger} i \sigma_{\mu} D_{\mu} \Psi$$

- antiunitarity of Dirac operator: $D^* = -t_2 \, C \gamma_5 D \gamma_5 C t_2$
- extended flavour symmetry:

$$SU(N_f)_L \times SU(N_f)_R \times U(1)_B \to SU(2N_f)$$

$$\mathcal{L}_{\mathsf{QC}_{2}\mathsf{D}} = \psi_{L}^{\dagger} i \sigma_{\mu} D_{\mu} \psi_{L} + \psi_{R}^{\dagger} i \sigma_{\mu}^{\dagger} D_{\mu} \psi_{R} = \Psi^{\dagger} i \sigma_{\mu} D_{\mu} \Psi$$
$$\Psi = \begin{pmatrix} \psi_{L} \\ \tilde{\psi}_{R} \end{pmatrix} = \begin{pmatrix} u_{L} \\ d_{L} \\ \tilde{u}_{R} \\ \tilde{d}_{R} \end{pmatrix}, \qquad \tilde{\psi}_{R} = \sigma_{2} t_{2} \psi_{R}^{*}$$

pseudoreality of $SU(2)_c$ gauge group generators: $t_a^* = t_a^T = -t_2 t_a t_2$

- antiunitarity of Dirac operator: $D^* = -t_2 \, C \gamma_5 D \gamma_5 C t_2$
- extended flavour symmetry:

$$SU(N_f)_L \times SU(N_f)_R \times U(1)_B \to SU(2N_f)$$

$$\mathcal{L}_{QC_{2}D} = \psi_{L}^{\dagger} i \sigma_{\mu} D_{\mu} \psi_{L} + \psi_{R}^{\dagger} i \sigma_{\mu}^{\dagger} D_{\mu} \psi_{R} = \Psi^{\dagger} i \sigma_{\mu} D_{\mu} \Psi$$
$$\Psi = \begin{pmatrix} \psi_{L} \\ \tilde{\psi}_{R} \end{pmatrix} = \begin{pmatrix} u_{L} \\ d_{L} \\ \tilde{u}_{R} \\ \tilde{d}_{R} \end{pmatrix}, \qquad \tilde{\psi}_{R} = \sigma_{2} t_{2} \psi_{R}^{*}$$

allows us to rotate $\psi_L o ilde{\psi}_R$, similarly $\langle ar{\psi}\psi
angle o \langle \psi\psi
angle$

Features of QC_2D Symmetry Breaking Pattern $N_f = 2$ [Kogut *et* al '99]

SU(4)

Features of QC_2D Symmetry Breaking Pattern $N_f = 2$ [Kogut *et* al '99]

$$SU(4) \xrightarrow{m_{\psi} \rightarrow \langle \bar{\psi}\psi \rangle \neq 0} Sp(4) \longrightarrow \text{ no SSB for } \mu = 0$$

$$\mu \downarrow \qquad \mu \downarrow$$

$$SU(2)_{L} \times SU(2)_{R} \times U(1)_{B} \rightarrow SU(2)_{V} \times U(1)_{B}$$

$$\langle \psi\psi \rangle \neq 0 \downarrow \qquad \langle \psi\psi \rangle \neq 0 \downarrow$$

$$SU(2)_{L} \times SU(2)_{R} \longrightarrow SU(2)_{V}$$

Features of QC_2D Symmetry Breaking Pattern $N_f = 2$ [Kogut *et* al '99]

Functional RG Exact RG Flow Equation

$$\partial_k \Gamma_k[\Phi] = \frac{1}{2} \operatorname{STr} \frac{1}{\Gamma_k^{(2)}[\Phi] + R_k} \partial_k R_k \quad \text{[Wetterich '91]}$$

Functional RG Exact RG Flow Equation

$$\partial_k \Gamma_k[\Phi] = \frac{1}{2} \operatorname{STr} \frac{1}{\Gamma_k^{(2)}[\Phi] + R_k} \partial_k R_k \quad \text{[Wetterich '91]}$$

• Γ_k interpolates between mircoscopic action S and full quantum effective action Γ

• integrate out fluctuations, $\Phi = \left(arphi, \psi, ar{\psi}, \mathsf{A}, c, ar{c}
ight)$

Functional RG Exact RG Flow Equation

ullet integrate out fluctuations, $\Phi=ig(arphi,\psi,ar\psiig)$

• $SU(4) \simeq SO(6) \rightarrow O(6)$ -order parameter potential + explicit breaking terms

$$U_k = V_k(\vec{\pi}^2 + \sigma^2 + \Delta_1^2 + \Delta_2^2) - c\sigma - \mu^2 |\Delta|^2$$

• $SU(4) \simeq SO(6) \rightarrow O(6)$ -order parameter potential + explicit breaking terms

$$U_k = V_k(\vec{\pi}^2 + \sigma^2 + \Delta_1^2 + \Delta_2^2) - c\sigma - \mu^2 |\Delta|^2$$

• Global minimum determines the condensates $\langle \sigma
angle, \; \langle |\Delta|
angle$:

 $\begin{array}{ll} \text{Normal phase:} & m^2-\mu^2>0 \ , \quad \langle\sigma\rangle=\frac{c}{m^2} \ , \quad \langle|\Delta|\rangle=0 \\ \text{Superfluid phase:} & m^2-\mu^2<0 \ , \quad \langle\sigma\rangle=\frac{c}{\mu^2} \ , \quad \langle|\Delta|\rangle\neq 0 \end{array}$

• $SU(4) \simeq SO(6) \rightarrow O(6)$ -order parameter potential + explicit breaking terms

$$U_k = V_k(ec{\pi}^2 + \sigma^2 + \Delta_1^2 + \Delta_2^2) - c\sigma - \mu^2 |\Delta|^2$$

• Global minimum determines the condensates $\langle \sigma
angle, \; \langle |\Delta|
angle$:

 $\begin{array}{ll} \text{Normal phase:} & m^2-\mu^2>0 \ , \quad \langle\sigma\rangle=\frac{c}{m^2} \ , \quad \langle|\Delta|\rangle=0 \\ \text{Superfluid phase:} & m^2-\mu^2<0 \ , \quad \langle\sigma\rangle=\frac{c}{\mu^2} \ , \quad \langle|\Delta|\rangle\neq 0 \end{array}$

• $SU(4) \simeq SO(6) \rightarrow O(6)$ -order parameter potential + explicit breaking terms

$$U_k = V_k(ec{\pi}^2 + \sigma^2 + \Delta_1^2 + \Delta_2^2) - c\sigma - \mu^2 |\Delta|^2$$

• Global minimum determines the condensates $\langle \sigma
angle, \; \langle |\Delta|
angle$:

$$\begin{array}{ll} \text{Normal phase:} & m^2 - \mu^2 > 0 \ , & \langle \sigma \rangle = \frac{c}{m^2} \ , & \langle |\Delta| \rangle = 0 \\ \text{Superfluid phase:} & m^2 - \mu^2 < 0 \ , & \langle \sigma \rangle = \frac{c}{\mu^2} \ , & \langle |\Delta| \rangle \neq 0 \end{array}$$

Flow

$$\partial_t U_k = \frac{1}{2} \left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right) - \left(\begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right)$$

• Fluctuations of the propagators \rightarrow wave function renormalizations $Z_{\Delta,k}, \ Z_{\phi,k}, \ Z_{\psi,k}$

• Fluctuations of the propagators \rightarrow wave function renormalizations $Z_{\Delta,k}, Z_{\phi,k}, Z_{\psi,k}$

$$\partial_t \xrightarrow{-1} = \underbrace{\bullet}^{\otimes} \underbrace{\bullet}_{\bullet} + \underbrace{\bullet}_{\bullet} \underbrace{\bullet}_{\bullet} + \underbrace{\bullet}_{\bullet} \underbrace{\bullet}_{\bullet} \underbrace{\bullet}_{\bullet} + \underbrace{\bullet}_{\bullet} \underbrace$$

• Running Yukawa coupling, $m_{Quark} = h_k \langle \bar{\psi}\psi \rangle = h_k \langle \sigma \rangle$

• Fluctuations of the propagators \rightarrow wave function renormalizations $Z_{\Delta,k}, Z_{\phi,k}, Z_{\psi,k}$

$$\partial_t \xrightarrow{-1} = \underbrace{\bullet}^{\otimes} \underbrace{\bullet}_{\bullet} + \underbrace{\bullet}_{\bullet} \underbrace{\bullet}_{\bullet} + \underbrace{\bullet}_{\bullet} \underbrace{\bullet}_{\bullet} \underbrace{\bullet}_{\bullet} + \underbrace{\bullet}_{\bullet} \underbrace$$

• Running Yukawa coupling, $m_{Quark} = h_k \langle \bar{\psi}\psi \rangle = h_k \langle \sigma \rangle$

• Fluctuations of the propagators \rightarrow wave function renormalizations $Z_{\Delta,k}, Z_{\phi,k}, Z_{\psi,k}$

• Running Yukawa coupling, $m_{Quark} = h_k \langle ar{\psi} \psi \rangle = h_k \langle \sigma
angle$

Results The QC₂D Phase Diagram

Results (preliminary) μ Dependence

Results (preliminary) Temperature Dependence

Results Precondensation

Results (preliminary) The QC₂D Phase Diagram

Results (preliminary) The QC2D Phase Diagram

Results (preliminary) The QC₂D Phase Diagram

Results (preliminary) The QC2D Phase Diagram

Results (preliminary) The QC₂D Phase Diagram

Results Chiral Limit $c = 0, m_{\pi} = 0$

Results Wave Function Renormalization

Results

Mass Spectrum

• Summary

• Summary

• phase diagram of 2-colour 2-flavour QCD, baryonic degrees of freedom,

- phase diagram of 2-colour 2-flavour QCD, baryonic degrees of freedom,
- FRG treatment in yields a pre-condensation phase

- phase diagram of 2-colour 2-flavour QCD, baryonic degrees of freedom,
- FRG treatment in yields a pre-condensation phase
- impact of running h_k and $Z_{\Delta,k}$, $Z_{\phi,k}$, $Z_{\psi,k}$

- phase diagram of 2-colour 2-flavour QCD, baryonic degrees of freedom,
- FRG treatment in yields a pre-condensation phase
- impact of running h_k and $Z_{\Delta,k}$, $Z_{\phi,k}$, $Z_{\psi,k}$
- Outlook

- phase diagram of 2-colour 2-flavour QCD, baryonic degrees of freedom,
- FRG treatment in yields a pre-condensation phase
- impact of running h_k and $Z_{\Delta,k}$, $Z_{\phi,k}$, $Z_{\psi,k}$
- Outlook
 - LPA beyond ϕ^4

- phase diagram of 2-colour 2-flavour QCD, baryonic degrees of freedom,
- FRG treatment in yields a pre-condensation phase
- impact of running h_k and $Z_{\Delta,k}$, $Z_{\phi,k}$, $Z_{\psi,k}$
- Outlook
 - LPA beyond ϕ^4
 - confinement/deconfinement phase transition

- phase diagram of 2-colour 2-flavour QCD, baryonic degrees of freedom,
- FRG treatment in yields a pre-condensation phase
- impact of running h_k and $Z_{\Delta,k}$, $Z_{\phi,k}$, $Z_{\psi,k}$
- Outlook
 - LPA beyond ϕ^4
 - confinement/deconfinement phase transition
 - baryons in 3-colour QCD

Symmetry group	Generators	Pseudo-/Goldstones
<i>SU</i> (4)	15	-

Symmetry group	Generators	Pseudo-/Goldstones
<i>SU</i> (4)	15	-
$\langle \psi \psi \rangle = \langle \Delta_1 \rangle \downarrow$		
<i>Sp</i> (4)	10	5 G (π, σ, Δ ₂)

Symmetry group	Generators	Pseudo-/Goldstones
<i>SU</i> (4)	15	-
$\langle \psi \psi angle = \langle \Delta_1 angle \downarrow$		
<i>Sp</i> (4)	10	5 G (π, σ, Δ ₂)
$\mu \downarrow$		
$SU(2)_L imes SU(2)_R$	6	4 PG ($ec{\pi}$, σ), 1 G (Δ_2)

Symmetry group	Generators	Pseudo-/Goldstones
<i>SU</i> (4)	15	-
$\langle \psi \psi angle = \langle \Delta_1 angle \downarrow$		
<i>Sp</i> (4)	10	5 G (π, σ, Δ ₂)
$\mu \downarrow$		
$SU(2)_L imes SU(2)_R$	6	4 PG (π, σ), 1 G (Δ ₂)
$m_\psi \downarrow$		
$SU(2)_V$	3	3 PPG ($ec{\pi}$), 1 PG (σ), 1G (Δ_2)

Backup Slides Hadronization

NJL model

Backup Slides Hadronization

NJL model

а

• Hubbard-Stratonovich transformation

$$\lambda_{\psi}(\bar{\psi}\psi)^2 = h\sigma\bar{\psi}\psi + \frac{1}{2}m^2\sigma^2$$
 with $\lambda_{\psi} = -\frac{h^2}{2m^2}$
nd EoM(σ) $\rightarrow \sigma = \bar{\psi}\psi$

Backup Slides Hadronization

NJL model

а

• Hubbard-Stratonovich transformation

$$\lambda_{\psi}(\bar{\psi}\psi)^2 = h\sigma\bar{\psi}\psi + \frac{1}{2}m^2\sigma^2 \quad \text{with} \quad \lambda_{\psi} = -\frac{h^2}{2m^2}$$

nd EoM(σ) $\rightarrow \langle \sigma \rangle = \langle \bar{\psi}\psi \rangle \neq 0 \quad \rightarrow \quad \text{massterm} \ m_q = h\langle \sigma \rangle$

• Large four-fermion coupling limit

• Large four-fermion coupling limit

• Large hadron mass limit

• Large four-fermion coupling limit

Large hadron mass limit

Dynamical degrees of freedom

Quarks ψ , Gluons $A \implies \psi$, mesons $\phi \sim \bar{\psi}\psi$, baryons $\Delta \sim \psi\psi$, A